1,320
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Overexpression of the Ginkgo biloba dihydroflavonol 4-reductase gene GbDFR6 results in the self-incompatibility-like phenotypes in transgenic tobacco

, , , , , , & show all
Article: 2163339 | Received 12 Oct 2022, Accepted 23 Dec 2022, Published online: 11 Jan 2023

References

  • Landi M, Tattini M, Gould KS. Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot. 2015;119:4–8. doi:10.1016/j.envexpbot.2015.05.012.
  • Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Bioch. 2013;72:21–34. doi:10.1016/j.plaphy.2013.02.001.
  • Kumar V, Nadda G, Kumar S, Yadav S, Herrera-Estrella A. Transgenic tobacco overexpressing tea cDNA encoding dihydroflavonol 4-reductase and anthocyanidin reductase induces early flowering and provides biotic stress tolerance. PloS One. 2013;8(6):e65535. doi:10.1371/journal.pone.0065535.
  • Ni J, Ruan R, Wang L, Jiang Z, Gu X, Chen L, Xu M. Functional and correlation analyses of dihydroflavonol-4-reductase genes indicate their roles in regulating anthocyanin changes in Ginkgo biloba. Ind Crops Prod. 2020;152:112546. doi:10.1016/j.indcrop.2020.112546.
  • Polashock JJ, Griesbach RJ, Sullivan RF, Vorsa N. Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Sci. 2002;163(2):241–251. doi:10.1016/S0168-9452(02)00087-0.
  • Shin DH, Choi M-G, Kang C-S, Park C-S, Choi S-B, Park Y-I. Overexpressing the wheat dihydroflavonol 4-reductase gene TaDFR increases anthocyanin accumulation in an Arabidopsis dfr mutant. Genes Genom. 2016;38(4):333–340. doi:10.1007/s13258-015-0373-3.
  • Fujii S, K-i K, Takayama S. Non-self- and self-recognition models in plant self-incompatibility. Nat Plants. 2016;2:16130. doi:10.1038/nplants.2016.130.
  • Takayama S, Isogai A. Self-incompatibility in plants. Annu Rev Plant Biol. 2005;56:467–489. doi:10.1146/annurev.arplant.56.032604.144249.
  • Singh B, Kaur P, Gopichand SRD, Ahuja PS, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia. 2008 Epub 2008/07/22;79(6):401–418. doi:10.1016/j.fitote.2008.05.007.
  • Ni J, Hao J, Jiang Z, Zhan X, Dong L, Yang X, Sun Z, Xu W, Wang Z, Xu M, et al. NaCl induces flavonoid biosynthesis through a putative novel pathway in post-harvest Ginkgo leaves. Front Plant Sci. 2017;8:920. doi:10.3389/fpls.2017.00920.
  • Ni J, Dong L, Jiang Z, Yang X, Chen Z, Wu Y, Xu M. Comprehensive transcriptome analysis and flavonoid profiling of Ginkgo leaves reveals flavonoid content alterations in day–night cycles. PLoS One. 2018;13(3):e0193897. doi:10.1371/journal.pone.0193897.
  • Ni J, Dong L, Jiang Z, Yang X, Sun Z, Li J, Wu Y, Xu M. Salicylic acid-induced flavonoid accumulation in Ginkgo biloba leaves is dependent on red and far-red light. Ind Crops Prod. 2018;118:102–110. doi:10.1016/j.indcrop.2018.03.044.
  • Zhang Y, Wang Y, Taylor JL, Jiang Z, Zhang S, Mei F, Wu Y, Wu P, Ni J. Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots. J Exp Bot. 2015;66(9):2535–2545. doi:10.1093/jxb/erv043.
  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature. 1989;342(6252):955–957. doi:10.1038/342955a0.
  • Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222. doi:10.3389/fpls.2012.00222.
  • Yin R, Han K, Heller W, Albert A, Dobrev PI, Zažímalová E, Schäffner, A. R. Kaempferol 3‐O‐rhamnoside‐7‐O‐rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol. 2014;201(2):466–475.
  • Mo Y, Nagel C, Taylor LP. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci U S A. 1992;89(15):7213–7217. doi:10.1073/pnas.89.15.7213.
  • Wang L, Lam PY, Lui ACW, Zhu F-Y, Chen M-X, Liu H, Lo, C. Flavonoids are indispensable for complete male fertility in rice. J Exp Bot. 2020;71(16):4715–4728. doi:10.1093/jxb/eraa204.
  • Kelley DR, Gasser CS. Ovule development: genetic trends and evolutionary considerations. Sexual Plant Reprod. 2009;22(4):229–234. doi:10.1007/s00497-009-0107-2.
  • Figueiredo DD, Köhler C. Auxin: a molecular trigger of seed development. Genes Dev. 2018;32(7–8):479–490. doi:10.1101/gad.312546.118.
  • Figueiredo DD, Kohler C. Bridging the generation gap: communication between maternal sporophyte, female gametophyte and fertilization products. Curr Opin Plant Biol. 2016;29:16–20. doi:10.1016/j.pbi.2015.10.008.
  • Aw S, Hamamura Y, Chen Z, Schnittger A, Berger F. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development. (Cambridge (England)). 2010;137:2683–2690
  • MacIntosh GC, Castandet B. Organellar and secretory ribonucleases: major players in plant RNA homeostasis. Plant Physiol. 2020;183(4):1438–1452.24. doi:10.1104/pp.20.00076.
  • Lim KY, Matyasek R, Kovarik A, Leitch AR. Genome evolution in allotetraploid nicotiana. Biol J Linn Soc. 2004;82(4):599–606. doi:10.1111/j.1095-8312.2004.00344.x.
  • Zhao H, Zhang Y, Zhang H, Song Y, Zhao F, Zhang Y, Zhu S, Zhang H, Zhou Z, Guo H, et al. Origin, loss, and regain of self-incompatibility in angiosperms. Plant Cell. 2022;34(1):579–596. doi:10.1093/plcell/koab266.
  • Moghe GD, Last RL. Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiol. 2015;169(3):1512–1523. doi:10.1104/pp.15.00994.