2,592
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Alleviation of drought stress through foliar application of thiamine in two varieties of pea (Pisum sativum L.)

, ORCID Icon, , ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Article: 2186045 | Received 15 Dec 2022, Accepted 22 Feb 2023, Published online: 08 Mar 2023

References

  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants. 2022;11(13):1620. doi:10.3390/plants11131620.
  • Farooq MS, Uzaiir M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M. Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci. 2022;13:927535. doi:10.3389/fpls.2022.927535.
  • Pereira, L. S. Water, agriculture and food: challenges and issues. Water Resources Management, 2017;31(10),2985–13. doi:10.1007/s11269-017-1664-z.
  • Stamm MD, Enders LS, Donze-Reiner TJ, Baxendale FP, Siegfried BD, Heng-Moss TM. Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. BMC Genom. 2014;15:1–13. doi:10.1186/1471-2164-15-1055.
  • Waseem M, Rehman ZU, Sabetta F, Ahmad I, Ahmad M, Sabri MMS. Evaluation of the predictive performance of regional and global ground motion predictive equations for shallow active regions in Pakistan. Sustainability. 2022;14:8152. doi:10.3390/su14138152.
  • Mehmood M, Khan I, Chattha M, Hussain S, Ahmad N, Aslam M, Hafeez MB, Hussan M, Hassan MU, Nawaz M, Iqbal MM, Hussain F. Thiourea application protects maize from drought stress by regulating growth and physiological traits. Pak J Sci. 2021;73:355. http://pjosr.com/index.php/pjs/article/view/684
  • Hafeez MB, Zahra N, Zahra K, Raza A, Khan A, Shaukat K, Khan S. Brassinosteroids: molecular and physiological responses in plant growth and abiotic stresses. Plant Stress. 2021;2:100029. doi:10.1016/j.stress.2021.100029.
  • Zhang W, Wang J, Xu L, Wang A, Huang L, Du H, Qiu L, Oelmüller R. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav. 2018;13:e1414121. doi:10.1080/15592324.2017.1414121.
  • Ghani MI, Saleem S, Rather SA, Rehmani MS, Alamri S, Rajput VD, Kalaji HM, Saleem N, Sial TA, Liu M. Foliar application of zinc oxide nanoparticles: an effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere. 2022;289:133202. doi:10.1016/j.chemosphere.2021.133202.
  • Iftikhar I, Anwar-Ul-Haq M, Akhtar J, Maqsood M. Exogenous osmolytes supplementation improves the physiological characteristics, antioxidant enzymatic activity and lipid peroxidation alleviation in drought-stressed soybean. Pak J Agri Sci. 2022;59:43–53. doi:10.21162/PAKJAS/22.923.
  • Saddiq MS, Wang X, Iqbal S, Hafeez MB, Khan S, Raza A, Iqbal J, Maqbool MM, Fiaz S, Qazi MA, et al. Effect of water stress on grain yield and physiological characters of quinoa genotypes. Agronomy. 2021;11(10):1934. doi:10.3390/agronomy11101934.
  • Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen Z-H, Siddique KHM, Zhuang W, et al. Developing drought-smart, ready-to-grow future crops. Plant Genome. 2022. e20279. doi:10.1002/tpg2.20279
  • Penna D, Geris J, Hopp L, Scandellari F. Water sources for root water uptake: using stable isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems. Agric Ecosyst Environ. 2020;291:106790. doi:10.1016/j.agee.2019.106790.
  • Iquebal MA, Sharma P, Jasrotia RS, Jaiswal S, Kaur A, Saroha M, Angadi UB, Sheoran S, Singh R, Singh GP, et al. Rnaseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep, 2019;9:1–18. doi:10.1038/s41598-019-49915-2.
  • Morin A, Maurousset L, Vriet C, Lemoine R, Doidy J, Pourtau N. Carbon fluxes and environmental interactions during legume development, with a specific focus on Pisum sativum. Physiol Plant. 2022;174:e13729. doi:10.1111/ppl.13729.
  • Hacisalihoglu G, Beisel NS, Settles AM, Gupta D. Characterization of pea seed nutritional value within a diverse population of Pisum sativum. PloS One. 2021;16(11):e0259565. doi:10.1371/journal.pone.0259565.
  • Khan R, Manzoor N, Zia A, Ahmad I, Ullah A, Shah SM, et al. Exogenous application of chitosan and humic acid effects on plant growth and yield of pea (Pisum sativum). Inter J Biosci. 2018;12:43–50.
  • Tan C, Zhang L, Duan X, Chai X, Huang R, Kang Y, Yang X. Effects of exogenous sucrose and selenium on plant growth, quality, and sugar metabolism of pea sprouts. J Sci Food Agric. 2022;102:2855–2863. doi:10.1002/jsfa.11626.
  • Arafa SA, Attia KA, Niedbała G, Piekutowska M, Alamery S, Abdelaal K, Alateeq TK, Ali M, Elkelish A, Attallah SY. Seed Priming boost adaptation in pea plants under drought stress. Plants. 2021;10:2201. doi:10.3390/plants10102201.
  • Kumari VV, Roy A, Vijayan R, Banerjee P, Verma VC, Nalia A, Pramanik M, Mukherjee B, Ghosh A, Reja MH, et al. Drought and heat stress in cool-season food legumes in sub-tropical regions: consequences, adaptation, and mitigation strategies. Plants, 2021;10:1038. doi:10.3390/plants10061038.
  • Sukhova E, Yudina L, Akinchits E, Vodeneev V, Sukhov V. Influence of electrical signals on pea leaf reflectance in the 400–800-nm range. Plant Signal Behav. 2019;14:1610301. doi:10.1080/15592324.2019.1610301.
  • Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: a way forward for improving drought tolerance in plants. Physiol Plant. 2021;172:1269–1290. doi:10.1111/ppl.13325.
  • Granaz KS, Baksh G, Zahra N, Hafeez MB, Raza A, Raza A, Samad A, Nizar M, Wahid A. Foliar application of thiourea, salicylic acid, and kinetin alleviate salinity stress in maize grown under etiolated and de-etiolated conditions. Discover Food. 2022;2:1–14. doi:10.1007/s44187-022-00027-3.
  • Raza A, Salehi H, Rahman MA, Zahid Z, Haghjou MM, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, et al. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci, 2022;13:961872. doi:10.3389/fpls.2022.961872.
  • Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM Crops & Food. 2022;13(1):196–217. doi:10.1080/21645698.2022.2106111.
  • Raza A, Tabassum J, Mubarik M, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H, et al. Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol, 2022;24:540–558. doi:10.1111/plb.13368.
  • Alam, S.S., Akhi, A.H., Alam, F., Hasanuzzaman, M. and Rohman, M., 2022. 22 Enhancement of Plant Productivity and Stress Tolerance by the Application of an Exogenous Supply of Vitamins. In Biostimulants for Crop Production and Sustainable Agriculture. (pp. 348–371). GB: CABI. UK. DOI:10.1079/9781789248098.0022.
  • Asensi-Fabado MA, Munné-Bosch S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trend Plant Sci. 2010;15:582–592. doi:10.1016/j.tplants.2010.07.003.
  • Colinas M, Fitzpatrick TB. Natures balancing act: examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites. Curr Opin Plant Biol. 2015;25:98–106. doi:10.1016/j.pbi.2015.05.001.
  • Subki A, Abidin AAZ, Yusof ZNB. The role of thiamine in plants and current perspectives in crop improvement. B Group Vitamins-Current Uses and Perspectives. 2018;5:33–44.
  • Du Q, Wang H, Xie J. Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets? Int J Biol Sci. 2011;7:41. doi:10.7150/ijbs.7.41.
  • Fitzpatrick TB, Chapman LM. The importance of thiamine (vitamin B1) in plant health: from crop yield to biofortification. J Biol Chem. 2020;295:12002–12013. doi:10.1074/jbc.REV120.010918.
  • Fallahi H-R, Aminifard MH, Jorkesh A. Effects of thiamine spraying on biochemical and morphological traits of basil plants under greenhouse conditions. J Hortic Postharvest Res. 2018;1:27–36.
  • El-Metwally IM, Sadak MS. Physiological role of thiamine and weed control treatments on faba bean and associated weeds grown under salt affected soil. Bullet Natl Res Centre. 2019;43:1–16. doi:10.1186/s42269-019-0142-6.
  • Li W, Mi X, Jin X, Zhang D, Zhu G, Shang X, Zhang D, Guo W. Thiamine functions as a key activator for modulating plant health and broad-spectrum tolerance in cotton. Plant J. 2022;111:374–390. doi:10.1111/tpj.15793.
  • Sadak MS, El-Bassiouny H, Mahfouz S, El-Enany M, Elewa T. Use of thiamine, pyridoxine and biostimulant for better yield of wheat plants under water stress: growth, osmoregulations, antioxidantive defense and protein pattern. Egypt J Chem. 2022. doi:10.21608/ejchem.2022.160140.6898.
  • C-L L, Wang M, X-M W, Chen D-H, H-J L, Shen J-L, Qiao Z, Zhang W. THI1, a thiamine thiazole synthase, interacts with Ca2±dependent protein kinase CPK33 and modulates the S-type anion channels and stomatal closure in Arabidopsis. Plant Physiol. 2016;170:1090–1104. doi:10.1104/pp.15.01649.
  • Estefan G, Sommer R, Ryan J. Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. International Center for Agricultural Research in the Dry Areas (ICARDA). 2013;3:20–135.
  • Arnon A. Method of extraction of chlorophyll in the plants. Agron J. 1967;23:112–121.
  • Davies B, Goodwin T. Chemistry and biochemistry of plant pigments. Carotenoids. 1976;2:38–165.
  • Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem. 1985;33:213–217. doi:10.1021/jf00062a013.
  • Bates J. Tell it how it is: few school leavers understand what nursing is all about. Nursing Standard. 2004;18:25–26. doi:10.7748/ns.18.19.25.s40.
  • Yemm E, Willis A. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 1954;57:508. doi:10.1042/bj0570508.
  • Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein dye-binding. Anal Biochem. 1976;72:248–254. doi:10.1016/0003-2697(76)90527-3.
  • Chance B, Maehly A. Assay of catalases and peroxidases. Methods Enzymol. 1955;2:764–775.
  • Wolf B. An improved universal extracting solution and its use for diagnosing soil fertility. Comm Soil Sci Plant Anal. 1982;13:1005–1033. doi:10.1080/00103628209367331.
  • Couchoud M, Salon C, Girodet S, Jeudy C, Vernoud V, Prudent M. Pea efficiency of post-drought recovery relies on the strategy to fine-tune nitrogen nutrition. Front Plant Sci. 2020;11:204. doi:10.3389/fpls.2020.00204.
  • Nataraja KN, Dhanyalakshmi K, Govind G, Oelmüller R. Activation of drought tolerant traits in crops: endophytes as elicitors. Plant Signal Behav. 2022;17:2120300. doi:10.1080/15592324.2022.2120300.
  • Abdelaal K, AlKahtani M, Attia K, Hafez Y, Király L, Künstler A. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology. 2021;10:520. doi:10.3390/biology10060520.
  • Kasim WA, Nessem AA, Gaber A. Effect of seed priming with aqueous extracts of carrot roots, garlic cloves or ascorbic acid on the yield of Vicia faba grown under drought stress. Pak J Bot. 2019;51:1979–1985. doi:10.30848/PJB2019-6(41).
  • AlKahtani MD, Hafez YM, Attia K, Rashwan E, Husnain LA, AlGwaiz HI, Abdelaal KAA. Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants. 2021;10(3):398. doi:10.3390/antiox10030398.
  • Abdelaal KA, Attia KA, Alamery SF, El-Afry MM, Ghazy AI, Tantawy DS, Al-Doss AA, El-Shawy ESE, Abu-Elsaoud A, Hafez YM. Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability. 2020;12:1736. doi:10.3390/su12051736.
  • Rashwan E, Alsohim AS, El-Gammaal A, Hafez Y, Abdelaal KA. Foliar application of nano zink-oxide can alleviate the harmful effects of water deficit on some flax cultivars under drought conditions. Fresenius Environ Bull. 2020;29:8889–8904.
  • Mohammadi Alagoz S, Zahra N, Hajiaghaei Kamrani M, Asgari Lajayer B, Nobaharan K, Astatkie T, Siddique KHM, Farooq M. Role of Root Hydraulics in Plant Drought Tolerance. J Plant Growth Regul. 2022;1–16. doi:10.1007/s00344-022-10807-x.
  • Aminifard MH, Jorkesh A, Fallahi H-R, Alipoor K. Foliar application of thiamin stimulates the growth, yield and biochemical compounds production of coriander and fenugreek. J Hortic Res. 2018; 26. 10.2478/johr-2018-0009.
  • Khan N, Ali S, Zandi P, Mehmood A, Ullah S, Ikram M, Ismail I, Shahid MA, Babar MA. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak J Bot. 2020;52:355–363. doi:10.30848/PJB2020-2(24).
  • Pandey K, Kumar RS, Prasad P, Pande V, Trivedi PK, Shirke PA. Coordinated regulation of photosynthesis and sugar metabolism in guar increases tolerance to drought. Environ Exp Bot. 2022;194:104701. doi:10.1016/j.envexpbot.2021.104701.
  • Rapala-Kozik M, Wolak N, Kujda M, Banas AK. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol. 2012;12:1–14. doi:10.1186/1471-2229-12-2.
  • Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. Response mechanism of plants to drought stress. Horticulturae. 2021;7:50. doi:10.3390/horticulturae7030050.
  • Shin YK, Bhandari SR, Lee JG. Monitoring of salinity, temperature, and drought stress in grafted watermelon seedlings using chlorophyll fluorescence. Front Plant Sci. 2021;12:2913. doi:10.3389/fpls.2021.786309.
  • Besharati J, Shirmardi M, Meftahizadeh H, Ardakani MD, Ghorbanpour M. Changes in growth and quality performance of Roselle (Hibiscus sabdariffa L.) in response to soil amendments with hydrogel and compost under drought stress. S Afr J Bot. 2022;145:334–347. doi:10.1016/j.sajb.2021.03.018.
  • Mehrasa H, Farnia A, Kenarsari MJ, Nakhjavan S. Endophytic bacteria and SA application improve growth, biochemical properties, and nutrient uptake in White Beans under drought stress. Journal of Soil Sci Plant Nutr. 2022;1–12. doi:10.1007/s42729-022-00884-y.
  • EL Sayed NI, Abd-ELhady WM, Selim EM. Increased Resistance to Salt Stress of Duranta plumieri Irrigated with Seawater by Using Thiamin, Humic Acid and Salicylic acid. Journal of Plant Production. 2017;8(5):617–27. DOI:10.21608/JPP.2017.40492.
  • Goyer A. Thiamine in plants: aspects of its metabolism and functions. Phytochemistry. 2010;71(14–15):1615–1624. doi:10.1016/j.phytochem.2010.06.022.
  • Dawood M, El-Metwally I, Abdelhamid M. Physiological response of lupine and associated weeds grown at salt-affected soil to α‑tocopherol and hoeing treatments. Gesunde Pflanzen. 2016;68:117–127. doi:10.1007/s10343-016-0367-3.
  • Mostafa MR, Mervat SS, Safaa R-L, Ebtihal MAE, Magdi TA. Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. J Hortic Sci Biotechnol. 2015;90:195–202. doi:10.1080/14620316.2015.11513172.
  • Orabi SA, Abdelhamid MT. Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J Saudi Soc Agric Sci. 2016;15:145–154. doi:10.1016/j.jssas.2014.09.001.
  • Abdelhamid MT, Sadak MS, Schmidhalter U, El-Saady AK. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biol Colomb. 2013;18:499–509.