1,333
Views
0
CrossRef citations to date
0
Altmetric
Review

The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses

ORCID Icon
Article: 2191463 | Received 02 Feb 2023, Accepted 11 Mar 2023, Published online: 19 Mar 2023

References

  • Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet radiation from a plant perspective: the plant-microorganism context. Front Plant Sci. 2020;11:1984.
  • Cockell CS, Horneck G. The history of the UV radiation climate of the earth—theoretical and space-based observations. Photochem Photobiol. 2001;73:447–9.
  • Horneck G, Klaus DM, Mancinelli RL. Space microbiology. Microbiol Mol Biol Rev. 2010;74:121–156.
  • Kataria S, Jajoo A, Guruprasad KN. Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. J Photochem Photobiol B. 2014;137:55–66.
  • Takahashi M, Teranishi M, Ishida H, Kawasaki J, Takeuchi A, Yamaya T, Watanabe M, Makino A, Hidema J. Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA. Plant J. 2011;66:433–442.
  • Hidema J, Teranishi M, Iwamatsu Y, Hirouchi T, Ueda T, Sato T, Burr B, Sutherland BM, Yamamoto K, Kumagai T. Spontaneously occurring mutations in the cyclobutane pyrimidine dimer photolyase gene cause different sensitivities to ultraviolet-B in rice. Plant J. 2005;43:57–67.
  • Mmbando GS, Teranishi M, Hidema J. Very high sensitivity of African rice to artificial ultraviolet-B radiation caused by genotype and quantity of cyclobutane pyrimidine dimer photolyase. Sci Rep. 2020;10:1–14.
  • Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M. Climate change effects on secondary compounds of forest trees in the northern hemisphere. Front Plant Sci. 2018;9:1445.
  • Hideg É, Jansen MAK, Strid Å. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 2013;18:107–115.
  • Takahashi S, Milward SE, Yamori W, Evans JR, Hillier W, Badger MR. The solar action spectrum of photosystem II damage. Plant Physiol. 2010;153:988–993.
  • Mitchell DL, Nairn RS. The biology of the (6–4) photoproduct. Photochem Photobiol. 1989;49:805–819.
  • Britt AB. DNA damage and repair in plants. Annu Rev Plant Biol. 1996;47:75–100.
  • Li N, Teranishi M, Yamaguchi H, Matsushita T, Watahiki MK, Tsuge T, Li SS, Hidema J. UV-B-induced CPD photolyase gene expression is regulated by UVR8-dependent and-independent pathways in arabidopsis. Plant Cell Physiol. 2015;56:2014–2023.
  • Dany AL, Douki T, Triantaphylides C, Cadet J. Repair of the main UV-induced thymine dimeric lesions within Arabidopsis thaliana DNA: evidence for the major involvement of photoreactivation pathways. J Photochem Photobiol B. 2001;65:127–135.
  • Britt AB. Repair of DNA damage induced by solar UV. Photosynth Res. 2004;81:105–112.
  • Hidema J, Kumagai T. Sensitivity of rice to ultraviolet-B radiation. Ann Bot. 2006;97:933–942.
  • Teranishi M, Iwamatsu Y, Hidema J, Kumagai T. Ultraviolet-B sensitivities in Japanese lowland rice cultivars: cyclobutane pyrimidine dimer photolyase activity and gene mutation. Plant Cell Physiol. 2004;45:1848–1856.
  • Hidema J, Taguchi T, Ono T, Teranishi M, Yamamoto K, Kumagai T. Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation. Plant J. 2007;50:70–79.
  • Teranishi M, Taguchi T, Ono T, Hidema J. Augmentation of CPD photolyase activity in japonica and indica rice increases their UVB resistance but still leaves the difference in their sensitivities. Photochem Photobiol Sci. 2012;11:812–820.
  • Mmbando GS, Teranishi M, Hidema J. Transgenic rice Oryza glaberrima with higher CPD photolyase activity alleviates UVB-caused growth inhibition. GM Crop Food. 2021;12:435–448.
  • Wada M, Kagawa T, Sato Y. Chloroplast movement. Annu Rev Plant Biol. 2003;54:455–468.
  • Iwabuchi K, Hidema J, Tamura K, Takagi S, Hara-Nishimura I. Plant nuclei move to escape ultraviolet-induced DNA damage and cell death. Plant Physiol. 2016;170:678–685.
  • Hermanowicz P, Banaś AK, Sztatelman O, Gabryś H, Łabuz J. UV-B induces chloroplast movements in a phototropin-dependent manner. Front Plant Sci. 2019;10:1279.
  • Bidel LPR, Meyer S, Goulas Y, Cadot Y, Cerovic ZG. Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species. J Photochem Photobiol B. 2007;88:163–179.
  • Hernandez L, Alegre F, Munné-Bosch VBS. How relevant are flavonoids as antioxidants in plants. Trends Plant Sci. 2009;14:125–132.
  • Janisiewicz WJ, Takeda F, Nichols B, Glenn DM, Jurick IW, Camp MJ. Use of low-dose UV-C irradiation to control powdery mildew caused by podosphaera aphanis on strawberry plants. Can J Plant Pathol. 2016;38:430–439.
  • Escalona VH, Aguayo E, Martínez-Hernández GB, Artés F. UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biol Technol. 2010;56:223–231.
  • Mmbando GS, Ando S, Takahashi H, Hidema J. High ultraviolet ‑ B sensitivity due to lower CPD photolyase activity is needed for biotic stress response to the rice blast fungus, magnaporthe oryzae. Photochem Photobiol Sci. 2023;1–3.
  • Barnes PW, Williamson CE, Lucas RM, Robinson SA, Madronich S, Paul ND, Bornman JF, Bais AF, Sulzberger B, Wilson SR, et al. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat Sustain. 2019;2:569–579.
  • Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Wilson SR, Madronich S, Andrady AL, Heikkilä AM, et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2020. Photochem Photobiol Sci. 2021;20:1–67.
  • Taalas P, Kaurola J, Kylling A, Shindell D, Sausen R, Dameris M, Grewe V, Herman J, Damski J, Steil B. The impact of greenhouse gases and halogenated species on future solar UV radiation doses. Geophys Res Lett. 2000;27:1127–1130.
  • Germ M, Spahić I, Gaberščik A. Morphological, biochemical and physiological responses of Indian cress (Tropaeolum majus) to elevated UV-B radiation. Period Biol. 2016;2:3.
  • Caldwell MM, Teramura AH, Tevini M. The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol. 1989;4:363–367.
  • Ueda T, Nakamura C. Ultraviolet-defense mechanisms in higher plants. Biotechnol Biotechnol Equip. 2011;25:2177–2182.
  • Cramp RL, Ohmer MEB, Franklin CE, Cooke S. UV exposure causes energy trade-offs leading to increased chytrid fungus susceptibility in green tree frog larvae. Conserv Physiol. 2022;10:coac038.
  • Mmbando GS, Hidema J. The trade-off between UVB sensitivity and tolerance against other stresses in African rice species. Turk J Botany. 2021;45:601–612.
  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134:1683–1696.
  • Nawrath C, Heck S, Parinthawong N, Métraux JP. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell. 2002;14:275–286.
  • Brosché M, Strid Å. Molecular events following perception of ultraviolet-b radiation by plants. Physiol Plant. 2003;117:1–10.
  • Meyer P, Van de Poel B, De Coninck B. UV-B light and its application potential to reduce disease and pest incidence in crops. Hortic Res. 2021;8:8.
  • Demkura PV, Ballaré CL. UVR8 mediates UV-B-induced Arabidopsis defense responses against botrytis cinerea by controlling sinapate accumulation. Mol Plant. 2012;5:642–652.
  • Keller M, Rogiers SY, Schultz HR. Nitrogen and ultraviolet radiation modify grapevines’ susceptibility to powdery mildew. Vitis. 2003;42:87–94.
  • Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 2003;133:1420–1428.
  • Jenkins GI. Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol. 2009;60:407–431.
  • Paul ND. Stratospheric ozone depletion, UV-B radiation and crop disease. Environ Pollut. 2000;108:343–355.
  • Gunasekera TS, Paul ND, Ayres PG. The effects of ultraviolet-b (UV-B: 290–320 nm) radiation on blister blight disease of tea (camellia sinensis). null. 1997;46:179–185.
  • Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ. Plant responses to UV radiation and links to pathogen resistance. Int Rev Cytol. 2006;255:1–40.
  • Kunz BA, Dando PK, Grice DM, Mohr PG, Schenk PM, Cahill DM. UV-induced DNA damage promotes resistance to the biotrophic pathogen hyaloperonospora parasitica in arabidopsis. Plant Physiol. 2008;148:1021–1031.
  • Mackerness AH, Surplus SL, Blake P, John CF, Buchanan-Wollaston V, Jordan BR, Thomas B. Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant Cell Environ. 1999;22:1413–1423.
  • Bonomelli A, Mercier L, Franchel J, Baillieul F, Benizri É, Mauro MC. Response of grapevine defenses to UV—C exposure. null. 2004;55:51–59.
  • Borie B, Jeandet P, Parize A, Bessis R, Adrian M. Resveratrol and stilbene synthase mRNA production in grapevine leaves treated with biotic and abiotic phytoalexin elicitors. null. 2004;55:60–64.
  • Brederode FT, Linthorst HJM, Bol JF. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol. 1991;17:1117–1125.
  • Choi JJ, Klosterman SJ, Hadwiger LA. A comparison of the effects of DNA-damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion, and cell death. Plant Physiol. 2001;125:752–762.
  • Conconi A, Miquel M, Ryan CA. Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol. 1996;111:797–803.
  • El Ghaouth A, Wilson CL, Callahan AM. Induction of chitinase, β-1,3-glucanase, and phenylalanine ammonia lyase in peach fruit by UV-C treatment. Phytopathology. 2003;93:349–355.
  • Green R, Fluhr R. UV-B-induced PR-1 accumulation is mediated by active oxygen species. Plant Cell. 1995;7:203–212.
  • Sävenstrand H, Brosché M, Ängehagen M, Strid Å. Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant Cell Environ. 2000;23:689–700.
  • Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. Embo J. 2001;21:6483–6493.
  • Frohnmeyer H, Loyall L, Blatt MR, Grabov A. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures. Plant J. 1999;20:109–117.
  • Mackerness SAH, John CF, Jordan B, Thomas B. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett. 2001;489:237–242.
  • Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, Leiss KA, Klinkhamer PGL. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. J Exp Bot. 2019;70:315–327.
  • Qi J, Zhang M, Lu C, Hettenhausen C, Tan Q, Cao G, Zhu X, Wu G, Wu J. Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory through the jasmonic acid pathway. Sci Rep. 2018;8:1–9.
  • Topcu Y, Dogan A, Sahin-Nadeem H, Polat E, Kasimoglu Z, Erkan M. Morphological and biochemical responses of broccoli florets to supplemental ultraviolet-B illumination. Agric Ecosyst Environ. 2018;259:1–10.
  • Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol B. 2019;193:51–88.
  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K. Role of secondary metabolites in plant defense against pathogens. Microb Pathog. 2018;124:198–202.
  • Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS, Dabur R. Natural products–antifungal agents derived from plants. J Asian Nat Prod Res. 2009;11:621–638.
  • Zavala JA, Mazza CA, Dillon FM, Chludil HD, Ballare CL. Soybean resistance to stink bugs (N ezara viridula and P iezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions. Plant Cell Environ. 2015;38:920–928.
  • Fardhani DM, Kharisma AD, Kobayashi T, Arofatullah NA, Yamada M, Tanabata S, Yokoda Y, Widiastuti A, Sato T. Ultraviolet-B irradiation induces resistance against powdery mildew in cucumber (Cucumis sativus L.) through a different mechanism than that of heat shock-induced resistance. Agron. 2022;12:12.
  • Bari R, Jones JDG. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69:473–488.
  • Smith JL, De Moraes CM, Mescher MC. Jasmonate-and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci Former Pestic Sci. 2009;65:497–503.
  • Vandenbussche F, Yu N, Li W, Vanhaelewyn L, Hamshou M, Van Der Straeten D, Smagghe G. An ultraviolet B condition that affects growth and defense in arabidopsis. Plant Sci. 2018;268:54–63.
  • Mannucci A, Mariotti L, Castagna A, Santin M, Trivellini A, Reyes TH, Mensuali-Sodi A, Ranieri A, Quartacci MF. Hormone profile changes occur in roots and leaves of micro-tom tomato plants when exposing the aerial part to low doses of UV-B radiation. Plant Physiol Biochem. 2020;148:291–301.
  • Vanhaelewyn L, Prinsen E, Van Der Straeten D, Vandenbussche F. Hormone-controlled UV-B responses in plants. J Exp Bot. 2016;67:4469–4482.
  • He Y, Li X, Zhan F, Xie C, Zu Y, Li Y, Yue M. Resistance-related physiological response of rice leaves to the compound stress of enhanced UV-B radiation and magnaporthe oryzae. J Plant Interact. 2018;13:321–328.
  • Kanto T, Matsuura K, Yamada M, Usami T, Amemiya Y. UV-B radiation for control of strawberry powdery mildew. Acta Hortic. 2009;842:359–362.
  • Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, Lohse M, Zrenner R. UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol. 2012;53:1546–1560.
  • Kuhlmann F, Müller C. Impacts of ultraviolet radiation on interactions between plants and herbivorous insects: a chemo-ecological perspective. Prog Bot. 2011;72:305–347.
  • Mazza CA, Zavala J, Scopel AL, Ballaré CL. Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proc Natl Acad Sci. 1999;96:980–985.
  • Kuhlmann F, Müller C. UV-B impact on aphid performance mediated by plant quality and plant changes induced by aphids. Plant Biol. 2010;12:676–684.
  • Mazza CA, Giménez PI, Kantolic AG, Ballaré CL. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions. Physiol Plant. 2013;147:307–315.
  • Izaguirre MM, Mazza CA, Svatoš A, Baldwin IT, Ballaré CL. Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in nicotiana attenuata and nicotiana longiflora. Ann Bot. 2007;99:103–109.
  • Escobar-Bravo R, Klinkhamer PGL, Leiss KA. Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Front Plant Sci. 2017;8:278.
  • Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR. The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surfaces. J Exp Bot. 1996;47:99–109.
  • Yan A, Pan J, An L, Gan Y, Feng H. The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J Photochem Photobiol B. 2012;113:29–35.
  • Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci. 2012;13:17077–17103.
  • Howe GA, Jander G. Plant immunity to insect herbivores. Annu Rev Plant Biol. 2008;59:41–66.
  • Đinh SN, Galis I, Baldwin IT. UVB radiation and 17-hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (tupiocoris notatus) attack in field-grown Nicotiana attenuata plants. Plant Cell Environ. 2013;36:590–606.
  • Hayes S, Velanis CN, Jenkins GI, Franklin KA. UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc Natl Acad Sci. 2014;111:11894–11899.
  • Hectors K, van Oevelen S, Guisez Y, Prinsen E, Jansen MAK. The phytohormone auxin is a component of the regulatory system that controls UV-mediated accumulation of flavonoids and UV-induced morphogenesis. Physiol Plant. 2012;145:594–603.
  • Lindroth RL, Hofman RW, Campbell BD, McNabb WC, Hunt DY. Population differences in Trifolium repens L. response to ultraviolet-B radiation: foliar chemistry and consequences for two lepidopteran herbivores. Oecologia. 2000;122:20–28.
  • Kuhlmann F, Müller C. Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects. Environ Exp Bot. 2009;66:61–68.
  • Wargent JJ, Jordan BR. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytol. 2013;197:1058–1076.
  • Wargent JJ, Nelson BCW, McGhie TK, Barnes PW. Acclimation to UV-B radiation and visible light in L actuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses. Plant Cell Environ. 2015;38:929–940.
  • Robson TM, Hartikainen SM, Aphalo PJ. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendulaRoth.) seedlings? Plant Cell Environ. 2015;38:953–967.
  • Coffey A, Prinsen E, Jansen MAK, Conway J. The UVB photoreceptor UVR8 mediates accumulation of UV-absorbing pigments, but not changes in plant morphology, under outdoor conditions. Plant Cell Environ. 2017;40:2250–2260.
  • Jones RAC, Naidu RA. Global dimensions of plant virus diseases: current status and future perspectives. Annu Rev Virol. 2019;6:387–409.
  • Bebber DP, Ramotowski MAT, Gurr SJ. Crop pests and pathogens move polewards in a warming world. Nat Clim Chang. 2013;3:985–988.
  • Iwamatsu Y, Aoki C, Takahashi M, Teranishi M, Ding Y, Sun C, Kumagai T, Hidema J. UVB sensitivity and cyclobutane pyrimidine dimer (CPD) photolyase genotypes in cultivated and wild rice species. Photochem Photobiol Sci. 2008;7:311–320.
  • Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Casati P. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell. 2013;25:3570–3583.
  • Fina J, Casadevall R, AbdElgawad H, Prinsen E, Markakis MN, Beemster GTS, Casati P. UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels. Plant Physiol. 2017;174:1110–1126.
  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for crop improvement: an update review. Front Plant Sci. 2018;9:1–17.
  • Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S. Light signaling and UV-B-mediated plant growth regulation. J Integr Plant Biol. 2020;62:1270–1292.
  • Hidema J, Kumagai T, Sutherland BM. UV radiation-sensitive Norin 1 rice contains defective cyclobutane pyrimidine dimer photolyase. Plant Cell. 2000;12:1569–1578.
  • Jia X, Ren L, Chen QJ, Li R, Tang G. UV-B-responsive microRnas in populus tremula. J Plant Physiol. 2009;166:2046–2057.
  • Mallory AC, Vaucheret H. Functions of microRnas and related small RNAs in plants. Nat Genet. 2006;38:S31–36.
  • Vidal EA, Moyano TC, Krouk G, Katari MS, Tanurdzic M, McCombie WR, Coruzzi GM, Gutiérrez RA. Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC Genomics. 2013;14:1–15.
  • Yang Y, Guo J, Cheng J, Jiang Z, Xu N, An X, Chen Z, Hao J, Yang S, Xu Z. Identification of UV-B radiation responsive microRnas and their target genes in chrysanthemum (Chrysanthemum morifolium Ramat) using high-throughput sequencing. Ind Crops Prod. 2020;151:112484.
  • Zhou X, Wang G, Zhang W. UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol. 2007;3:103.
  • Soto-Suárez M, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci Rep. 2017;7:1–14.
  • Zhu C, Ding Y, Liu H. MiR398 and plant stress responses. Physiol Plant. 2011;143:1–9.
  • Ulm R. Molecular genetics of genotoxic stress signalling in plants. In: Hirt H, Shinozaki K, editors. Plant responses to abiotic stress. Berlin, Heildelberg: Springer; 2003. p. 217–240.
  • González Besteiro MA, Bartels S, Albert A, Ulm R. Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J. 2011;68:727–737.
  • Shi C, Liu H. How plants protect themselves from ultraviolet-B radiation stress. Plant Physiol. 2021;187:1096–1103.
  • Anderson JC, Bartels S, Besteiro MAG, Shahollari B, Ulm R, Peck SC. Arabidopsis MAP kinase phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. Plant J. 2011;67:258–268.
  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell. 2009;21:944–953.
  • Escobar-Bravo R, Nederpel C, Naranjo S, Kim HK, Rodríguez-López MJ, Chen G, Glauser G, Leiss KA, Klinkhamer PGL. Ultraviolet radiation modulates both constitutive and inducible plant defenses against thrips but is dose and plant genotype dependent. J Pest Sci. 2004;2021:69–81.