2,070
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

Hypothesis paper: the development of a regulatory layer in P2B autoinhibited Ca2+-ATPases may have facilitated plant terrestrialization and animal multicellularization

ORCID Icon & ORCID Icon
Article: 2204284 | Received 14 Mar 2023, Accepted 14 Apr 2023, Published online: 25 Apr 2023

References

  • Axelsen KB, Palmgren MG. Evolution of Substrate Specificities in the P-Type ATPase Superfamily. J Mol Evol. 1998;46(1):84–8. doi:10.1007/PL00006286.
  • Geisler M, Frangne N, Gomès E, Martinoia E, Palmgren MG. The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol. 2000;124(4):1814–1827. doi:10.1104/pp.124.4.1814.
  • Ishaka MR, Brown E, Rosenberg A, Romanowsky S, Davis JA, Choi WG, Harper JF. Arabidopsis Ca2+-ATPases 1, 2, and 7 in the endoplasmic reticulum contribute to growth and pollen fitness. Plant Physiol. 2021;185(4):1966–1985. doi:10.1093/plphys/kiab021.
  • Lee SM, Kim HD, Han HJ, Moon BC, Kim CY, Harper JF, Chung WS. Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett. 2007;581(21):3943–3949. doi:10.1016/j.febslet.2007.07.023.
  • Fuglsang AT, Palmgren M. Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment. Plant Physiol. 2021;187(4):1856–1875. doi:10.1093/plphys/kiab330.
  • Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A. Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium. 2007;42(4–5):345–350. doi:10.1016/j.ceca.2007.05.001.
  • Verkhratsky A, Parpura V. Calcium signalling and calcium channels: evolution and general principles. Eur J Pharmacol. 2014;739:1–3. doi:10.1016/j.ejphar.2013.11.013.
  • Luan S, Wang C. Calcium signaling mechanisms across kingdoms. Annu Rev Cell Dev Biol. 2021;37(1):311–340. doi:10.1146/annurev-cellbio-120219-035210.
  • Carafoli E, Krebs J. Why calcium? how calcium became the best communicator. J Biol Chem. 2016;291(40):20849–20857. doi:10.1074/jbc.R116.735894.
  • Falchetto R, Vorherr T, Brunner J, Carafoli E. The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem. 1991;266(5):2930–2936. doi:10.1016/S0021-9258(18)49937-1.
  • Falchetto R, Vorherr T, Carafoli E. The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci. 1992;1(12):1613–1621. doi:10.1002/pro.5560011209.
  • Krebs J, Bürkler J, Guerini D, Brunner J, Carafoli E. 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a Hydrophobic, Photoreactive Probe, Labels Calmodulin and Calmodulin Fragments in a Ca2+-Dependent way. Biochem. 1984;23(3):400–403. doi:10.1021/bi00298a002.
  • Bækgaard L, Luoni L, De Michelis MI, Palmgren MG. The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. J Biol Chem. 2006;281(2):1058–1065. doi:10.1074/jbc.M508299200.
  • Tidow H, Poulsen LR, Andreeva A, Knudsen M, Hein KL, Wiuf C, Palmgren MG, Nissen P. A bimodular mechanism of calcium control in eukaryotes. Nature. 2012;491(7424):468–472. doi:10.1038/nature11539.
  • Niggli V, Adunyah ES, Carafoli E. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase. J Biol Chem. 1981;256(16):8588–8592. doi:10.1016/S0021-9258(19)68885-X.
  • Brini M, Di Leva F, Ortega CK, Domi T, Ottolini D, Leonardi E, Tosatto SCE, Carafoli E. Deletions and mutations in the acidic lipid-binding region of the plasma membrane Ca2+ pump. J Biol Chem. 2010;285(40):30779–30791. doi:10.1074/jbc.M110.140475.
  • Brodin P, Falchetto R, Vorherr T, Carafoli E. Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane Ca2+ pump. Eur J Biochem. 1992;204(2):939–946. doi:10.1111/j.1432-1033.1992.tb16715.x.
  • Meneghelli S, Fusca T, Luoni L, De Michelis MI. Dual mechanism of activation of plant plasma membrane Ca2+-ATPase by acidic phospholipids: evidence for a phospholipid- binding site which overlaps the calmodulin-binding site. Mol Membr Biol. 2009;25(6–7):539–546. doi:10.1080/09687680802508747.
  • Stéger A, Hayashi M, Lauritzen EW, Herburger K, Shabala L, Wang C, Bendtsen AK, Nørrevang AF, Madriz-Ordeñana K, Ren S, et al. The evolution of plant proton pump regulation via the R domain may have facilitated plant terrestrialization. Commun Biol. 2022;5(1):1312. doi:10.1038/s42003-022-04291-y.
  • Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5(1):113. doi:10.1186/1471-2105-5-113.
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–542. doi:10.1093/sysbio/sys029.
  • Stamatakis A. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi:10.1093/bioinformatics/btu033.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729. doi:10.1093/molbev/mst197.
  • Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). 2010; pp. 1–8. doi:10.1109/GCE.2010.5676129.
  • Mantilla G, Peréz-Gordones MC, Cisneros-Montufar S, Benaim G, Navarro JC, Mendoza M, Ramírez-Iglesias JR. Structural analysis and diversity of calmodulin-binding domains in membrane and intracellular Ca2+-ATPases. J Membr Biol. 2022;256(2):159–174. doi:10.1007/s00232-022-00275-5.
  • Hoeflich KP, Ikura M. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell. 2002;108(6):739–742. doi:10.1016/s0092-8674(02)00682-7.
  • Ishida H, Vogel HJ. Protein-peptide interaction studies demonstrate the versatility of calmodulin target protein binding. Protein Pept Lett. 2006;13(5):455–465. doi:10.2174/092986606776819600.
  • Yamniuk AP, Vogel HJ. Calmodulin’s flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol Biotechnol. 2004;27(1):33–57. doi:10.1385/MB:27:1:33.
  • Palmgren M, Sørensen DM, Halström BM, Säll T, Broberg K. Evolution of P2A and P5A ATPases: ancient gene duplications and the red algal connection to green plants revisited. Physiol Plant. 2020;168(3):630–647. doi:10.1111/ppl.13008.
  • Limonta M, Romanowsky S, Olivari C, Bonza MC, Luoni L, Rosenberg A, Harper JF, De Michelis MI. ACA12 is a deregulated isoform of plasma membrane Ca2 + -ATPase of Arabidopsis thaliana. Plant Mol Biol. 2014;84(4–5):387–397. doi:10.1007/s11103-013-0138-9.
  • Trigos AS, Pearson RB, Papenfuss AT, Goode DL. How the evolution of multicellularity set the stage for cancer. Br J Cancer. 2018;118:145–152. doi:10.1038/bjc.2017.398.
  • Zhang ZB, Wang XK, Wang S, Guan Q, Zhang W, Feng ZG. Expansion and diversification of the 14-3-3 gene family in Camellia sinensis. J Mol Evol. 2022;90(3–4):296–306. doi:10.1007/s00239-022-10060-6.
  • Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci. 2012;367(1602):2619–2639. doi:10.1098/rstb.2012.0003.
  • Friedberg F, Rhoads AR. Evolutionary aspects of calmodulin. IUBMB Life. 2001;51(4):215–221. doi:10.1080/152165401753311753.
  • Jarrett HW, Penniston JT. Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3´: 5´-cyclinucleotide phosphodiesterase. Biochem Biophys Res Commun. 1977;77(4):1210–1216. doi:10.1016/s0006-291x(77)80108-3.