1,884
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn

, & ORCID Icon
Article: 2215025 | Received 09 Mar 2023, Accepted 01 May 2023, Published online: 27 May 2023

References

  • Abdelrahman M, Burritt DJ, Lam-Son Phan T. Metabolomic quantitative trait locus mapping and osmotic adjustment traits improve crop yields under environmental stresses. Semin Cell Dev Biol. 2018;83:86–10. doi:10.1016/j.semcdb.2017.06.020.
  • Brasileiro ACM, Morgante CV, Araujo ACG, Leal-Bertioli SCM, Silva AK, Martins ACQ, Vinson CC, Santos CMR, Bonfim O, Togawa RC, et al. Transcriptome profiling of wild Arachis from Water-Limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep. 2015;33(6):1876–1892. doi:10.1007/s11105-015-0882-x.
  • Fracasso A, Trindade LM, Amaducci S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol. 2016;16(1):115. doi:10.1186/s12870-016-0800-x.
  • Greenham K, McClung CR. Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet. 2015;16(10):598–610. doi:10.1038/nrg3976.
  • Hu W, Xia Z, Yan Y, Ding Z, Tie W, Wang L, Zou M, Wei Y, Lu C, Hou X, et al. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Front Plant Sci. 2015;6:914. doi:10.3389/fpls.2015.00914.
  • Mofatto LS, Carneiro FDA, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil J-L, Lapeyre-Montes F, Lartaud M, et al. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biol. 2016;16(1):94. doi:10.1186/s12870-016-0777-5.
  • Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58(2):221–227. doi:10.1093/jxb/erl164.
  • Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F, Wang Q, Rong T, Pan G, Cao M, et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol. 2014;14(1):83. doi:10.1186/1471-2229-14-83.
  • Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57(1):781–803. doi:10.1146/annurev.arplant.57.032905.105444.
  • Zhang L, Yu S, Zuo K, Luo L, Tang K, Dupuy D. Identification of gene modules associated with drought response in rice by network-based analysis. PLos One. 2012;7(5):e33748. doi:10.1371/journal.pone.0033748.
  • Huo Y, Wang M, Wei Y, Xia Z. Overexpression of the maize psbA gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in Tobacco. Front Plant Sci. 2016;6:1223. doi:10.3389/fpls.2015.01223.
  • Min H, Chen C, Wei S, Shang X, Sun M, Xia R, Liu X, Hao D, Chen H, Xie Q. Identification of drought tolerant mechanisms in maize seedlings based on transcriptome analysis of recombination inbred lines. Front Plant Sci. 2016;7:1080. doi:10.3389/fpls.2016.01080.
  • Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR. The carbon-nutrient balance hypothesis its rise and fall. Ecol Lett. 2001;4(1):86–95. doi:10.1046/j.1461-0248.2001.00192.x.
  • Zust T, Agrawal AA. 2017. Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Merchant, S.S. Eds.Vol. 68: pp. 513–534. USA. Annual Review of Plant Biology
  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol. 2012;63(1):637–661. doi:10.1146/annurev-arplant-042110-103829.
  • Sieber MH, Thomsen MB, Spradling AC. Electron transport chain remodeling by GSK3 during oogenesis connects nutrient state to reproduction. Cell. 2016;164(3):420–432. doi:10.1016/j.cell.2015.12.020.
  • Ohashi Y, Nakayama N, Saneoka H, Fujita K. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence, and stem diameter of soybean plants. Biol Plantarum. 2006;50(1):138–141. doi:10.1007/s10535-005-0089-3.
  • Zellnig G, Perktold A, Zechmann B. Fine structural quantification of drought-stressed Picea abies (L.) organelles based on 3D reconstructions. Protoplasma. 2010;243(1–4):129–136. doi:10.1007/s00709-009-0058-3.
  • Zellnig G, Zechmann B, Perktold A. Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves. Protoplasma. 2004;223(2–4):221–227. doi:10.1007/s00709-003-0034-2.
  • Austin JR 2nd, Frost E, Vidi PA, Kessler F, Staehelin LA. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell. 2006;18(7):1693–1703. doi:10.1105/tpc.105.039859.
  • van Wijk KJ, Kessler F. Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu Rev Plant Biol. 2017;68(1):253–289. doi:10.1146/annurev-arplant-043015-111737.
  • Singh DK, McNellis TW. Fibrillin protein function the tip of the iceberg? Trends Plant Sci. 2011;16(8):432–441. doi:10.1016/j.tplants.2011.03.014.
  • Brehelin C, Kessler F, van Wijk KJ. Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci. 2007;12(6):260–266. doi:10.1016/j.tplants.2007.04.003.
  • Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008;59(1):89–113. doi:10.1146/annurev.arplant.59.032607.092759.
  • Ruan CJ, Yan R, Wang BX, Mopper S, Guan WK, Zhang J. The importance of yellow horn (Xanthoceras sorbifolia) for restoration of arid habitats and production of bioactive seed oils. Ecol Eng. 2017;99:504–512. doi:10.1016/j.ecoleng.2016.11.073.
  • Zhang S, Zu YG, Fu YJ, Luo M, Zhang DY, Efferth T. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour Technol. 2010;101(3):931–936. doi:10.1016/j.biortech.2009.08.069.
  • Wu Y, Yuan W, Han X, Hu J, Yin L, Lv Z. Integrated analysis of fatty acid, sterol, and tocopherol components of seed oils obtained from four varieties of industrial and environmental protection crops. null. 2020;154:112655. doi:10.1016/j.indcrop.2020.112655.
  • Li KR, Feng CH. Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiol Plant. 2011;4(4):1293–1300. doi:10.1007/s11738-010-0661-0.
  • Jin H, Zou J, Li L, Bai X, Zhu T, Li J, Xu B, Wang Z. Physiological responses of yellow-horn seedlings to high temperatures under drought condition. Plant Biotechnol Rep. 2020;14(1):111–120. doi:10.1007/s11816-019-00590-9.
  • Galmes J, Ribas-Carbo M, Medrano H, Flexas J. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. J Exp Bot. 2011;62(2):653–665. doi:10.1093/jxb/erq303.
  • Long A, Zhang J, Yang LT, Ye X, Lai NW, Tan L-L, Lin D, Chen L-S. Effects of low pH on photosynthesis, related physiological parameters and nutrient profile of Citrus. Front Plant Sci. 2017;8:185. doi:10.3389/fpls.2017.00185.
  • Fang Z, Wang X, Zhang X, Zhao D, Tao J. Effects of fulvic acid on the photosynthetic and physiological characteristics of Paeonia ostii under drought stress. Plant Signal Behav. 2020;15(7):1774714. doi:10.1080/15592324.2020.1774714.
  • Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol. 2013;197(3):862–872. doi:10.1111/nph.12064.
  • Bi Q, Zhao Y, Du W, Lu Y, Gui L, Zheng Z, Yu H, Cui Y, Liu Z, Cui T, et al. Pseudomolecule-level assembly of the Chinese oil tree yellow horn (Xanthoceras sorbifolium) genome. Gigascience. 2019;8(6). doi:10.1093/gigascience/giz070.
  • Yu G, Wang LG, Han Y, He QY. clusterProfiler an R package for comparing biological themes among gene clusters. Omics-a J Integr Biol. 2012;16(5):284–287. doi:10.1089/omi.2011.0118.
  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server):W202–208. doi:10.1093/nar/gkp335.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303.
  • Dodd AN, Parkinson K, Webb AAR. Independent circadian regulation of assimilation and stomatal conductance in the ztl-1 mutant of Arabidopsis. New Phytol. 2004;162(1):63–70. doi:10.1111/j.1469-8137.2004.01005.x.
  • Fghire R, Anaya F, Ali OI, Benlhabib O, Ragab R, Wahbi S. Physiological and photosynthetic response of quinoa to drought stress. Chil J Agr Res. 2015;75(2):174–183. doi:10.4067/s0718-58392015000200006.
  • Stirbet A, Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology, B: Biology, 104, 236–257, DOI 10.1016/j.jphotobiol.2010.12.010.
  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. null. 2016;6(1):19228. doi:10.1038/srep19228.
  • Shi Y, He M. Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata). Gene. 2014;538(2):313–322. doi:10.1016/j.gene.2014.01.031.
  • Demmig-Adams B, Adams WW. An integrative approach to photoinhibition and photoprotection of photosynthesis. Environ Exp Bot. 2018;154:1–3. doi:10.1016/j.envexpbot.2018.05.006.
  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res. 2013;117(1–3):529–546. doi:10.1007/s11120-013-9885-3.
  • Magdaong NCM, Blankenship RE. Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. J Biol Chem. 2018;293(14):5018–5025. doi:10.1074/jbc.TM117.000233.
  • Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol. 2013;16(3):307–314. doi:10.1016/j.pbi.2013.03.011.
  • Ruban AV. Nonphotochemical chlorophyll fluorescence quenching mechanism and effectiveness in protecting plants from photodamage. J Plant Physiol. 2016;170(4):1903–1916. doi:10.1104/pp.15.01935.
  • Kalaji HM, Račková L, Paganová V, Swoczyna T, Rusinowski S, Sitko K. Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ Exp Bot. 2018;152:149–157. doi:10.1016/j.envexpbot.2017.11.001.
  • Oukarroum A, Bussotti F, Goltsev V, Kalaji HM. Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot. 2015;109:80–88. doi:10.1016/j.envexpbot.2014.08.005.
  • Flexas J, Medrano H (2002). Drought-inhibition of photosynthesis in C-3 plants stomatal and non-stomatal limitations revisited. Annals of Botany, 89, 183–189, DOI 10.1093/aob/mcf027.
  • Ramachandra Reddy A, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161(11):1189–1202. doi:10.1016/j.jplph.2004.01.013.
  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB. Homologs of plant PsbP and PsbQ proteins are necessary for regulation of Photosystem II activity in the cyanobacterium synechocystis 6803[W]. Plant Cell. 2004;16(8):2164–2175. doi:10.1105/tpc.104.023515.
  • Suorsa M, Sirpio S, Allahverdiyeva Y, Paakkarinen V, Mamedov F, Styring S, Aro E-M. PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem. 2006;281(1):145–150. doi:10.1074/jbc.M510600200.
  • Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J. Role of subunits in eukaryotic Photosystem I. Biochim Biophys Acta. 2001;1507(1–3):41–60. doi:10.1016/s0005-2728(01)00196-7.
  • Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV, Peter H, Stefan J. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness. Plant J. 2003;35(3):350–361. doi:10.1046/j.1365-313x.2003.01811.x.
  • Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot. 2008;59(12):3317–3325. doi:10.1093/jxb/ern185.
  • Li Y, Li H, Li Y, Zhang S. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. null. 2017;5(3):231–239.
  • Wang X, Wu J, Yang Z, Zhang F, Sun H, Qiu X, Yi F, Yang D, Shi F. Physiological responses and transcriptome analysis of the Kochia prostrata (L.) Schrad. to seedling drought stress. AIMS Genetics. 2019;6(02):17–35. doi:10.3934/genet.2019.2.17.
  • Jiang Q, Yang J, Wang Q, Zhou K, Mao K, Ma F. Overexpression of MdEPF2 improves water use efficiency and reduces oxidative stress in tomato. Environ Exp Bot. 2019;162:321–332. doi:10.1016/j.envexpbot.2019.03.009.
  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi E. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci. 2010;4:580–585.
  • Wu X, Yuan J, Luo A, Chen Y, Fan Y. Drought stress and re-watering increase secondary metabolites and enzyme activity in dendrobium moniliforme. null. 2016;94:385–393. doi:10.1016/j.indcrop.2016.08.041.
  • Zhang R, Wise RR, Struck KR, Sharkey TD. Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth Res. 2010;105(2):123–134. doi:10.1007/s11120-010-9572-6.
  • Singh DK, Maximova SN, Jensen PJ, Lehman BL, Ngugi HK, McNellis TW. FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. J Plant Physiol. 2010;154(3):1281–1293. doi:10.1104/pp.110.164095.
  • Gaude N, Brehelin C, Tischendorf G, Kessler F, Dormann P. Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J. 2007;49(4):729–739. doi:10.1111/j.1365-313X.2006.02992.x.
  • Lippold F, Vom Dorp K, Abraham M, Holzl G, Wewer V, Yilmaz JL, Lager I, Montandon C, Besagni C, Kessler F, et al. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell. 2012;24(5):2001–2014. doi:10.1105/tpc.112.095588.
  • Zbierzak AM, Kanwischer M, Wille C, Vidi PA, Giavalisco P, Lohmann A, Briesen I, Porfirova S, Bréhélin C, Kessler F, et al. Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule. Biochem J. 2009;425(2):389–399. doi:10.1042/BJ20090704.
  • Lundquist PK, Poliakov A, Giacomelli L, Friso G, Appel M, McQuinn RP, Krasnoff SB, Rowland E, Ponnala L, Sun Q, et al. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. Plant Cell. 2013;25(5):1818–1839. doi:10.1105/tpc.113.111120.
  • Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, Hirochika H. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J. 2010;61(5):804–815. doi:10.1111/j.1365-313X.2009.04107.x.
  • De Domenico S, Bonsegna S, Horres R, Pastor V, Taurino M, Poltronieri P, Imtiaz M, Kahl G, Flors V, Winter P, et al. Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiol Bioch. 2012;61:115–122. doi:10.1016/j.plaphy.2012.09.009.