1,311
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Salicylic Acid Enhances Growth, Photosynthetic Performance and Antioxidant Defense Activity Under Salt Stress in Two Mungbean [Vigna radiata (L.) R. Wilczek] Variety

, , , , &
Article: 2217605 | Received 18 Apr 2023, Accepted 21 May 2023, Published online: 08 Jun 2023

References

  • Yang W, Zhou Z, Chu Z. Emerging roles of salicylic acid in plant saline stress tolerance. Int J Mol Sci. 2023;24:3388. doi:10.3390/ijms24043388.
  • Van ZE, Zhang Y, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol. 2020;71:403–13. doi:10.1146/annurev-arplant-050718-100005.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Shahbaz M, Ashraf M. Improving salinity tolerance in cereals. CRC Crit Rev Plant Sci. 2013;32:237–249. doi:10.1080/07352689.2013.758544.
  • Food and Agriculture Organization of the United Nations. The state of the world’s land and water resources for food and agriculture; Managing systems at risk. London: Rome and Earthscan; 2011. http://www.fao.org/3/a-i1688e.
  • Isayenkov SV, Maathuis FJM. Maathuis FJM plant salinity stress: many unanswered questions remain. Front Plant Sci. 2019;10:80. doi:10.3389/fpls.2019.00080.
  • Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Frontier In Plant Science. 2015;6:210. doi:10.3389/fpls.2015.00210.
  • Choudhury S, Panda P, Sahoo L, Panda SK. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8(4):e23681. doi:10.4161/psb.23681.
  • Jahan B, AlAjmi MF, Rehman MT, Khan NA. Treatment of nitric oxide supplemented with nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard under salt stress. Physiol Plantarum. 2020;168:490–510. doi:10.1111/ppl.13056.
  • Sehar Z, Masood A, Khan NA. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ Exp Bot. 2019;161:277–289. doi:10.1016/j.envexpbot.2019.01.010.
  • Tadele Z. African orphan crops under abiotic stresses: challenges and opportunities. Scientifica. 2018;2018:1–19. doi:10.1155/2018/1451894.
  • Zörb C, Geilfus C-M, Dietz K-J, Weber A. Salinity and crop yield. Plant Biol J. 2019;21. doi:10.1111/plb.12884.
  • Carpici EB, Celik N, Bayram G, Asik BB. The effects of salt stress on the growth, biochemical parameter and mineral element content of some maize (Zea mays L.) cultivars. Afr J Biotechnol. 2010;9:6937–6942.
  • Khodarahmpour Z, Ifar M, Motamedi M. Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol. 2012;11:298–304. doi:10.5897/AJB11.2624.
  • Rafieishirvan M. Asgharipur MR.Yield reaction and morphological characteristics of some mungbean genotypes to drought stress. Journal Of Modern Agriculture Knowledge. 2009;5:67–76.
  • Batra NG, Vinay S, Nilima K. Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. null. 2014;9:712–772. doi:10.1080/17429145.2014.905801.
  • Sharma M, Sunil KG, Baisakhi M, Vivek KM, Farah D, Afroz A, Vivek P. Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress. Plant Physiol Bioch. 2018;130:529–541. doi:10.1016/j.plaphy.2018.08.001.
  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontier Plant Science. 2015;6:462. doi:10.3389/fpls.2015.00462.
  • Peng Y, Yang J, Li X, Zhang Y. Salicylic acid: biosynthesis and signaling. Annu Rev Plant Biol. 2021;72:761–791. doi:10.1146/annurev-arplant-081320-092855.
  • Zhang Y, Xu S, Yang S, Chen Y. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis meloL.). Protoplasma. 2015;252:911–924. doi:10.1007/s00709-014-0732-y.
  • Pokotylo I, Hodges M, Kravets V, Ruelland E. A ménage à trois: salicylic acid, growth inhibition, and immunity. Trends Plant Science. 2021;27:460–471.
  • Rasheed F, Anjum N, Masood A, Sofo A, Khan N. The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J Plant Growth Regul. 2022;41:1891–1904. doi:10.1007/s00344-020-10257-3.
  • Iqbal N, Umar S, Khan NA, Khan MIR. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environment Experimental Botany. 2014;100:34–42.
  • Gregorio GB, Senadhira D, Mendoza RD Screening rice for salinity tolerance. IRRI Discussion Paper Series No. 22:1–30, International Rice research Institute, Manila, Philippines 1997.
  • Jha S, Singh J, Chouhan C, Singh O, Srivastava RK. Evaluation of multiple salinity tolerance indices for screening and comparative biochemical and molecular analysis of pearl millet [Pennisetum glaucum (L.) R. Br.] genotypes. J Plant Growth Regul. 2021;41:1820–1834. 10.1007/s00344-021-10424-0.
  • Fernandez GCJ ‘’effective selection criteria for assessing stress tolerance’’. In Kuo C (editor) Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress, Taiwan, 1992; pp. 257–270.
  • Genc Y, McDonald GK, Tester M. ’reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat’. Plant Cell Environment. 2007;30:1486–1498. doi:10.1111/j.1365-3040.2007.01726.x.
  • Saade S, Maurer A, Shahid M, Oakey H, Sónia Negrão SM, Pillen K, Pillen K, Tester M. Tester M.’’Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley’’. Science Report. 2016;6:32586. doi:10.1038/srep32586.
  • Guo J, Yang Y, Wang G, Yang L, Sun X. ’ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply. Plant Physiol. 2010;139:335–347. doi:10.1111/j.1399-3054.2010.01370.x.
  • Turner NC. Techniques and experimental approaches for the measurement of plant water status. Plant Soil. 1981;58:339–366. doi:10.1007/BF02180062.
  • Lichtentaler HK, Buschman C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols In Food Analytical Chemistry. 2001;1:F4.3.1–F4.3.8. doi:10.1002/0471142913.faf0403s01.
  • Yuan Z, Cao Q, Zhang K, Zhu Y, Tian Y, Cao W, Liu X, Liu X. Optimal leaf positions for SPAD meter measurement in rice. Front Plant Sci. 2016;7. doi:10.3389/fpls.2016.00719.
  • Williams ATR, Winfield SA, Miller JN. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer, Analyst. 1983;108:1067.
  • Kosugi H, Kikugawa K. Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid. Lipids. 1985;20:915–920. doi:10.1007/BF02534777.
  • Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1972;39:205–207. doi:10.1007/BF00018060.
  • Liu J, Wu YH, Yang JJ, Liu YD, Shen FF. Protein degradation and nitrogen remobilization during leaf senescence. J Plant Biol. 2008;51(1):11–19. doi:10.1007/BF03030735.
  • Chance B, Maehly AC. Assay of catalases and peroxidases. In: Colowick SP Kaplan NO, editors. Methods in enzymology. New York, NY:Academic Press; 1955. pp. 764–775. 10.1016/S0076-6879(55)02300-8
  • Aebi H. Catalase in vitro. null. 1984;105:121–126.
  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin’s phenol reagent. J Biol Chem. 1951;193:265–275. doi:10.1016/S0021-9258(19)52451-6.
  • Munns R, Tester M. ’mechanisms of salinity tolerance’’. Annu Rev Plant Biol. 2008;59:651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Fariduddin Q, Hayat S, Ahmad A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in. Brassica Juncea Photosynthetica. 2003;41:281–284. doi:10.1023/B:PHOT.0000011962.05991.6c.
  • Samadi S, Habibi G, Vaziri A. Effects of exogenous salicylic acid on antioxidative responses, phenolic metabolism and photochemical activity of strawberry under salt stress. Plant Physiol. 2019;9:2685–2694.
  • Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Journal Of Proteomic. 2017;163:28–51. doi:10.1016/j.jprot.2017.05.011.
  • Chandra A, Anand A, Dubey A. Effect of salicylic acid on morphological and biochemical attributes in cowpea. Journal Of Environment Biology. 2007;28:193–196.
  • Gharbi E, Lutts S, Dailly H, Quinet M. Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum) responses to salinity. Plant Signal Behav. 2018;13:e146936. doi:10.1080/15592324.2018.1469361.
  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K. Fatality of salt stress to plants: morphological, physiological and biochemical aspects. African Journal Of Biotecnology. 2010;9:5475e5480.
  • Muranaka S, Shimizu K, Kato M. Ionic and osmotic effects of salinity on single leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynt. 2002;40:201–207. doi:10.1023/A:1021337522431.
  • Zhang H, Zhu J, Gong Z, Zhu JK. Abiotic stress responses in plants. Nat Rev Genet. 2022;23:104–119. doi:10.1038/s41576-021-00413-0.
  • Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C. Grain legumes and fear of salt stress: focus on mechanisms and management strategies. Int J Mol Sci. 2019;20:799. doi:10.3390/ijms20040799.
  • Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci. 2020;25:1117–1130. doi:10.1016/j.tplants.2020.06.008.
  • Nishiyama Y, Allakhverdiev SI, Murata N. Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res. 2005;84:1–7. doi:10.1007/s11120-004-6434-0.
  • Nie W, Gong B, Chen Y, Wang J, Wei M, Shi Q. Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Scienctica Horticulturae. 2018;235:413–423. doi:10.1016/j.scienta.2018.03.011.
  • Khan MI, Fatma M, Per TS, Anjum NA, Khan NA. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. 2015;6:462. doi:10.3389/fpls.2015.00462.
  • Khan NA. NaCl inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat. Biologia plant. 2003;47:437–440. doi:10.1023/B:BIOP.0000023890.01126.43.
  • Demiral T, Türkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot. 2005;53:247e257. doi:10.1016/j.envexpbot.2004.03.017.
  • Misra N, Saxena P. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci. 2009;177:181–189. doi:10.1016/j.plantsci.2009.05.007.
  • Sabir P, Ashraf M, Hussain M, Jamil A. Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. Pak J Bot. 2009;41:2957e2964.
  • Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Shan D, Wang Z, Guo Y, Zhou J, et al. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Scientific Report. 2017;7(1):41236. doi:10.1038/srep41236.
  • Farheen J, Mansoor S, Abideen Z. Exogenously applied salicylic acid improved growth, photosynthetic pigments and oxidative stability in mungbean seedlings (Vigna radiata L.) at salt stress. Pakistan Journal Botany. 2018;50:901–912.
  • Jini D, Joseph B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci. 2017;24:97–108. doi:10.1016/j.rsci.2016.07.007.
  • Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innov. 2020;1:100017. 10.1016/j.xinn.2020.100017.
  • Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP. Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant. 2008;30:619–627. doi:10.1007/s11738-008-0157-3.
  • Desingh R. Kanagaraj G Influence of salinity stress on photosynthesis and anti-oxidative systems in two cotton varieties. General Applied Plant Physiology. 2007;33:221e234.
  • Verslues PE, Sharma S. Proline Metabolism and its Implications for Plant-environment Interaction. 2010;8:e0140. doi:10.1199/tab.0140.
  • Teixeira WF, Soares LH, Fagan EB, da Costa Mello S, Reichardt K, Dourado-Neto D. Amino acids as stress reducers in soybean plant growth under different water-deficit conditions. J Plant Growth Regul. 2020;39:905–919. doi:10.1007/s00344-019-10032-z.
  • Doganlar ZB, Atmaca M. Influence of airborne pollution on Cd, Zn, Pb, Cu, and Al accumulation and physiological parameters of plant leaves in Antakya (Turkey. null. 2011;214:509e523. doi:10.1007/s11270-010-0442-9.
  • Saeidnejad AH, Mardani H, Naghibolghora M. Protective effects of salicylic acid on physiological parameters and antioxidants response in maize seedlings under salinity stress. Journal Of Applied Environmental Biology Science. 2012;2:364–373.
  • Mehmet Ali D, Mehmet A, Alper Y. Effect of salinity on growth chemical composition and antioxidative enzyme activity of two malting Barley (Hordeum vulgare L.) cultivars. Turk J Biol. 2005;29:117e123.
  • Ashraf M, Harris PJC. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004;166:3e16. doi:10.1016/j.plantsci.2003.10.024.
  • Donnison IS, Gay AP, Thomas H, Edwards KJ, Edwards D, James CL, Thomas AM, Ougham HJ. Modification of nitrogen remobilization, grain fill and leaf senescence in maize (Zea mays) by transposon insertional mutagenesis in a protease gene. New Phytol. 2007;173:481–494. doi:10.1111/j.1469-8137.2006.01928.x.
  • Dietz KJ. Plant thiol enzymes and thiol homeostasis in relation to thiol dependent redox regulation and oxidative stress. In: Smirnoff N, editor. Antioxidants and Reactive Oxygen Species in Plants. Blackwell Publication; 2005. p. 25e52. 10.1002/9780470988565.ch2
  • Xiong L, Schumaker KS, Zhu J-K. Cell signaling for cold, drought and salt stresses. Plant Cell. 2002;14:S165eS183. doi:10.1105/tpc.000596.
  • Batista VCV, Pereira IMC, de Oliveira P-M, Canuto KM, Pereira RDCA, Rodrigues THS, de Carvalho HH, Gomes-Filho E, Carvalho HHD. Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscose. Environ Exp Bot. 2019;167:103870. doi:10.1016/j.envexpbot.2019.103870.
  • Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative lycopersicon pennellii. Physiol Plant. 1998;104:169–174. doi:10.1034/j.1399-3054.1998.1040204.x.
  • Nadarajah K, Abdul Hamid NW, Abdul Rahman NSN. SA-mediated regulation and control of abiotic stress tolerance in rice. IJMS. 2021;22:5591. doi:10.3390/ijms22115591.
  • Li G, Peng X, Wei L, Kang G. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene. 2013;529:321–325. doi:10.1016/j.gene.2013.07.093.
  • Torun H. Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. Physiol Plantarum. 2019;165:169–182. doi:10.1111/ppl.12798.
  • Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci. 2004;86:407e421.
  • Mittova V, Guy M, Tal M, Volokita M. Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennelli. J Exp Bot. 2004;55:1105e1113. doi:10.1093/jxb/erh113.
  • Chen YE, Cui JM, Li GX, Yuan M, Zhang ZW, Yuan S, Zhang HY. Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biologia Plantarum (Prague). 2016;60(1):139–147. doi:10.1007/s10535-015-0564-4.
  • EI-Hendawy SE, Hassan WM, AI-Suhaibani NA, Refay Y, Abdella KA. Comparative performance of multivariable agrophysiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front Plant Sci. 2017;8:435. doi:10.3389/fpls.2017.00435.