1,035
Views
0
CrossRef citations to date
0
Altmetric
Short communication

Plant growth regulator extracts from seaweeds promote plant growth and confer drought tolerance in canola (Brassica napus)

, , , , & ORCID Icon
Article: 2267222 | Received 22 Aug 2023, Accepted 30 Sep 2023, Published online: 30 Oct 2023

References

  • Canada’s top canola markets | The Canola Council of Canada. 2020. https://www.canolacouncil.org/markets-stats/topmarkets/.
  • Qian B, Jing Q, Bélanger G, Shang J, Huffman T, Liu J, Hoogenboom G. Simulated canola yield responses to climate change and adaptation in Canada. Agron J. 2018;110(1):133–7. doi:10.2134/agronj2017.02.0076.
  • Raza AA, Hussain K, Khan FA, Hussain T, Rehman ZU (2020). Effect of various levels of sulphur and phosphorus fertilizers on the growth and seed yields of canola (Brassica napus L.).
  • Ashour M, Hassan SM, Elshobary ME, Ammar GA, Gaber A, Alsanie WF, Mansour AT, El-Shenody R. Impact of commercial seaweed liquid extract (TAM®) biostimulant and its bioactive molecules on growth and antioxidant activities of hot pepper (Capsicum annuum). Plants. 2021;10(6):1045. doi:10.3390/plants10061045.
  • Shahriari AG, Mohkami A, Niazi A, Ghodoum Parizipour MH, Habibi-Pirkoohi M. Application of brown algae (Sargassum angustifolium) extract for improvement of drought tolerance in canola (Brassica napus L.). Iran J Biotechnol. 2021;19(1):e2775. doi:10.30498/IJB.2021.2775.
  • Chanda MJ, Merghoub N, El Arroussi H. Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J Microbiol Biotechnol. 2019;35(11):1–10. doi:10.1007/s11274-019-2745-3.
  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B. Seaweed extracts as biostimulants in horticulture. Sci Hortic (Amsterdam). 2015;196:39–48. doi:10.1016/j.scienta.2015.09.012.
  • Colla G, Cardarelli M, Bonini P, Rouphael Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience. 2017;52(9):1214–1220. doi:10.21273/HORTSCI12200-17.
  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in plant science: a global perspective. Front Plant Sci. 2017;7:2049. doi:10.3389/fpls.2016.02049.
  • Ma X, Yan H, Yang J, Liu Y, Li Z, Sheng M, Cao Y, Yu X, Yi X, Xu W, et al. PlantGSAD: a comprehensive gene set annotation database for plant species. Nucleic Acids Res. 2021;50(D1):D1456–D1467. doi:10.1093/nar/gkab794.
  • Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021 July 2;49(W1):W317–W325. doi:10.1093/nar/gkab447.
  • Marzec M, Daszkowska‐Golec A, Collin A, Melzer M, Eggert K, Szarejko I. Barley strigolactone signalling mutant hvd14. d reveals the role of strigolactones in abscisic acid‐dependent response to drought. Plant, Cell & Environ. 2020;43(9):2239–2253. doi:10.1111/pce.13815.
  • Li W, Nguyen KH, Chu HD, Watanabe Y, Osakabe Y, Sato M, Toyooka K, Seo M, Tian L, Tian C. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of Arabidopsis thaliana. Plant J. 2020;103(1):111–127. doi:10.1111/tpj.14712.
  • Stanic M, Hickerson NM, Arunraj R, Samuel MA. Gene‐editing of the strigolactone receptor BnD14 confers promising shoot architectural changes in Brassica napus (canola). Plant Biotechnol J. 2021;19(4):639. doi:10.1111/pbi.13513.
  • Lv S, Zhang Y, Li C, Liu Z, Yang N, Pan L, Wu J, Wang J, Yang J, Lv Y. Strigolactone‐triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid‐independent manner. New Phytol. 2018;217(1):290–304. doi:10.1111/nph.14813.
  • Zhang Y, Lv S, Wang G. Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal Behav. 2018;13(3):e1444322. doi:10.1080/15592324.2018.1444322.