621
Views
0
CrossRef citations to date
0
Altmetric
Short communication

Electrical signalling and plant response to herbivory: A short review

ORCID Icon, , , , , & show all
Article: 2277578 | Received 17 Mar 2022, Accepted 18 Oct 2023, Published online: 05 Dec 2023

References

  • Yao Jiepeng, Ling Yi, Hou P, Wang Z, Huang L. A graph neural network model for deciphering the biological mechanisms of plant electrical signal classification. Appl Soft Comput. 2023;137:110153. doi:10.1016/j.asoc.2023.110153.
  • Yudina L, Sukhova E, Popova A, Zolin Y, Abasheva K, Grebneva K, Sukhov V. Local action of moderate heating and illumination induces propagation of hyperpolarization electrical signals in wheat plants. Front Sustain Food Syst. 2023;6:1062449. doi:10.3389/fsufs.2022.1062449.
  • Ladeynova M, Kuznetsova D, Mudrilov M, Vodeneev V. Integration of electrical signals and phytohormones in the control of systemic response. Int J Mol Sci. 2023;24:847.
  • Mittler R, Blumwald E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell. 2015;27:64–6. doi:10.1105/tpc.114.133090.
  • Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. | Nature. 2013;500:422–426. doi:10.1038/nature12478.
  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ. Electrical signaling and systemic proteinase-inhibitor induction in the wounded plant. Nature. 1992;360:62–65. doi:10.1038/360062a0.
  • Sukhova E, Sukhov V. Electrical signals, plant tolerance to actions of stressors, and programmed cell death: is interaction possible? Plants. 2021;10(8):1704. doi:10.3390/plants10081704.
  • Pickard B. Action potentials in higher plants. The Botanical Review. 1973;39:172–201. doi:10.1007/BF02859299.
  • Mudrilov M, Ladeynova M, Grinberg M, Balalaeva I, Vodeneev V. Electrical signaling of plants under abiotic stressors: transmission of stimulus-specific information. Int J Mol Sci. 2021;22(19):10715. doi:10.3390/ijms221910715.
  • Fromm J, Lautner S. Electrical signals and their physiological significance in plants. Plant Cell Environ. 2007;30:249–257. doi:10.1111/j.1365-3040.2006.01614.x.
  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J. Transient knockout of photosynthesis mediated by electrical signal. New Phytol. 2003;161:715–722. doi:10.1111/j.1469-8137.2004.00985.x.
  • Dziubinska H, Trebacz K, Zawadzki T. The effect of excitation on the rate of respiration in the liverwort conocephalum conicum. Physiology Plant. 1989;75:417–423. doi:10.1111/j.1399-3054.1989.tb04648.x.
  • Davies E, Zawadzki T, Witters D. Electrical activity and signal transmission in plants: how do plants know? In: Penel C, and Greppin H editors. Plant signalling, plasma membrane and change of state. Geneva, Switzerland: Univ. de Geneve; 1991. pp. 119–137.
  • Fromm J, Hajirezaei M, Wilke I. The biochemical response of electrical signaling in the reproductive system of hibiscus plants. Plant Physiol. 1995;109(2):375–384. doi:10.1104/pp.109.2.375.
  • Fromm J, Bauer T. Action potentials in maize sieve tubes change phloem translocation. J Exp Bot. 1994;45(4):463–469. doi:10.1093/jxb/45.4.463.
  • Clarke D, Whitney H, Sutton G, Robert D. Detection and learning of floral electric fields by bumblebees. Sci. 2013;340(6128):66–69. doi:10.1126/science.1230883.
  • Sukhov V, Sukhova E, Vodeneev V. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog Biophys Mol Biol. 2019;146:63–84. doi:10.1016/j000.
  • Maffei ME, Bossi S. Electrophysiology and plant responses to biotic stress. In: Volkov AG, editor Plant electrophysiology – theory & methods. Berlin, Heidelberg: Springer-Verlag; 2006. pp. 461–481.
  • Dolfi M, Dini C, Morosi S, Comparini D, Masi E, Pandolfi C, Mancuso S. Electrical signaling related to water stress acclimation. Sens And Bio-Sens Res. 2021;32:100420. doi:10.1016/j.sbsr.2021.100420.
  • Trebacz K, Dziubinska H, Krol E. Electrical signals in long-distance communication in plants. In: Baluska F, Mancuso S Volkmann D, editors. Communication in plants – neuronal aspects of plant life. Berlin and Heidelberg, Germany: Springer-Verlag; 2006. pp. 277–290.
  • Degli Agosti R. Touch-induced action potentials in Arabidopsis thaliana. Archives Des Science. 2014;67:125–138. doi:10.1093/aob/mcx155.
  • Sevriukova O, Kanapeckaite A, Lapeikaite I, Kisnieriene V, Ladygiene R, Sakalauskas V. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell. J Environ Radioact. 2014;136:10–15. doi:10.1016/j.jenvrad.2014.04.016.
  • Opritov VA, Pyatygin SS, Vodeneev VA. Direct coupling of action potential generation in cells of a higher plant (Cucurbita pepo) with the operation of an electrogenic pump. Russ J Plant Physl+. 2002;49(1):142–147. doi:10.1023/A:1013732816263.
  • Vodeneev VA, Opritov VA, Pyatygin SS. Reversible changes of extracellular pH during action potential generation in a higher plant Cucurbita pepo. Russ J Plant Physiol. 2006;53:481–487. doi:10.1134/S102144370604008X.
  • Sukhova E, Mudrilov M, Vodeneev V, Sukhov V. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. Photosynth Res. 2018;136:215–228. doi:10.1007/s11120-017-0460-1.
  • Vodeneev VA, Akinchits EK, Orlova LA, Sukhov VS. The role of Ca2+, H+, and Cl− ions in generation of variation potential in pumpkin plants. Russ J Plant Physiol. 2011;58:974–981. doi:10.1134/S1021443711050256V.
  • Vodeneev VA, Akinchits EK, Sukhov VS. Variation potential in higher plants: mechanisms of generation and propagation. Plant Signaling & Behavior. 2015 08;10:e1057365. doi:10.1080/15592324.2015.1057365.
  • Zimmermann MR, Felle HH. Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities. Planta. 2009;229:539–547. doi:10.1007/s00425-008-0850-x.
  • Lautner S, Grams TEE, Matyssek R, Fromm J. Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol. 2005;138:2200–2209. doi:10.1104/pp.105.064196.
  • Zimmermann MR, Mithofer A, Will T, Felle HH, Furch AC. Herbivore-triggered electrophysiological reactions: candidates for systemic signals in higher plants and the challenge of their identification. Plant Physiol. 2016;170:2407–2419. doi:10.1104/pp.15.01736.
  • Macedo FDCO, Daneluzzi GS, Capelin D, Silva FB, Silva AR, Oliveira RF. Equipment and protocol for measurement of extracellular electrical signals, gas exchange and turgor pressure in plants. MethodsX. 2021. PMID: 33741533. doi:10.1016/j.molmet.2021.101214.
  • FROMM J, SPANSWICK R. Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot. 1993;44:1119–1125. doi:10.1093/jxb/44.7.1119.
  • Parise AG, Reissig GN, Basso LF, Senko LGS, Oliveira TFDC, De Toledo GRA, Ferreira AS, Souza GM. Detection of different hosts from a distance alters the behaviour and bioelectrical activity of cuscuta racemosa. Front Plant Sci. 2021;12:594195. doi:10.3389/fpls.2021.594195.
  • Xiaofei Y, Zhongyi W, Huang L, Wang C, Hou R, Xu Z, Qiao X. Research progress on electrical signals in higher plants. Prog Nat Sci. 2009;19:531–541. doi:10.1016/j.pnsc.2008.08.009.
  • Kwon Y, Kabange NR, Lee JY, Seo BY, Shin D, Lee SM; … Lee JH, Cho J-H, Kang J-W, Park D-S, Ko J-M. RNA-Seq and electrical penetration graph revealed the role of Grh1-mediated activation of defense mechanisms towards green rice leafhopper (Nephotettix cincticeps Uhler) resistance in rice (Oryza sativa L.). Int J Mol Sci. 2021;22(19):10696. doi:10.3390/ijms221910696.
  • Meena MK, Prajapati R, Krishna D, Divakaran K, Pandey Y, Reichelt M, Mathew MK, Boland AMW, Vadassery J. The Ca2+ channel CNGC19 regulates Arabidopsis defense against Spodoptera herbivory. Plant Cell. 2019;31(7):1539–1562. doi:10.1105/tpc.19.00057.
  • Pachú JKS, Macedo FC, Silva FB, Malaquias JB, Ramalho FS, Oliveira RF, Godoy WAC. Imidacloprid mediated stress on non-Bt and Bt cotton, aphid and ladybug interaction: approaches based on insect behaviour, fluorescence, dark respiration and plant electrophysiology. Chemosphere. 2021a;263:127561. doi:10.1016/j.chemosphere.2020.127561.
  • Maffei ME, Mithofer A, Boland W. Before gene expression: early events in plant-insect interaction. Trends Plant In Science. 2007;12:310–316. doi:10.1016/j.tplants.2007.06.001.
  • Zebelo SA, Maffei ME. Role of early signalling events in plant-insect interactions. J Experi Botany. 2015;66:435–448. doi:10.1093/jxb/eru480.
  • Bricchi I, Leitner M, Foti M, Mithofer A, Boland W, Maffei ME. Robotic mechanical wounding (Mec Worm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta. 2010;232:719–729. doi:10.1007/s00425-010-1203-0.
  • Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, myzus persicae, and Pseudomonas syringae in Arabidopsis. PloS One. 2012;7:1–20.
  • Heil M, Ton J. Long-distance signalling in plant defense. Trends Plant Sci. 2008;v:13 p. 264–272. doi:10.1016/j.tplants.2008.03.005.
  • Wu J, Baldwin IT. New insights into plants responses to the attack from insect herbivores. Annu Rev Genet. 2010;44:1–24. doi:10.1146/annurev-genet-102209-163500.
  • Green TR, Ryan CA. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Sci. 1972;v:175 p. 776–777. doi:10.1126/science.175.4023.776.
  • Baldwin IT, Zhang Z-P, Diab N, Ohnmeiss TE, McCloud ES, Lynds GY, Schmelz EA. Quantification, correlations and manipulation of wound induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta. 1997;201:397–404. doi:10.1007/s004250050082.
  • Abid M, Ali S, QI LK, Zahoor R, Tian Z, Jiang D, Snider JL, T Dai. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat. Science Reports. 2018;8:1–15. doi:10.1038/s41598-018-21441-7.
  • Pachú JKS, Macedo FCO, Malaquias JB, Ramalho FS, Oliveira RF, Franco FP, Godoy WAC, Lou Y. Electrical signalling on Bt and non-Bt cotton plants under stress by aphis gossypii. PloS One. 2021b;16:e0249699. doi:10.1371/journal.pone.0249699.
  • Stahlberg R, Cleland RE, Van Volkenburgh E. Slow wave potentials – a propagating electrical signal unique to higher plants. In: Baluska F, Mancuso S Volkmann D, editors. Communication in plants – neuronal aspects of plant life. Berlin and Heidelberg, Germany: Springer-Verlag; 2006. pp. 291–308.
  • Shiina, T., and M. Tazawa. 1986. Action potential in Luffa cylindlica and its effects on elonga Nation growth. Plant and Cell Physiology 27:1081–1089
  • Pachu´ JKS, Macedo FCO, Malaquias JB, Ramalho FS, Oliveira RF, Franco FP, et al. (2021) Electrical signalling on Bt and non-Bt cotton plants under stress by Aphis gossypii. PLoS ONE 16(4): e0249699. https://doi.org/10.1371/journal.pone.0249699
  • Mancuso S. (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Australian Journal of Plant Physiology 26, 55–61.
  • OPRITOV, V. A.; PYATYGIN, S. S.; VODENEEV, V. A. Direct Coupling of Action Potential Generation in Cells of a Higher Plant (Cucurbita pepo) with the Operation of an Electrogenic Pump. Russian Journal of Plant Physiology, v. 49, p. 142–147, 2002
  • KROL, E.; DZIUBINSKA, H.; TREBACZ, K. Low-Temperature Induced Transmembrane Potential Changes in the Liverwort Conocephalum conicum. Plant Cell Physiology. v. 44, p. 527–533, 2003.
  • VOLKOV, A. G. & HAACK, R. A. Insect-induced bioelectrochemical signals in potato plants Bioelectrochem and Bioenergetics, v 37, p. 55–60, 1995.
  • Maffei M, Bossi S, Spiteller D, Mithofer A, Boland W. Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant of Physiology 2004; 134:1752–1762.
  • STANKOVIC, B.; DAVIES, E. Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. Febs Letters. v. 390, p. 275–9, 1996. http://dx.doi.org/10.1016/0014-5793(96)00672-2.