435
Views
0
CrossRef citations to date
0
Altmetric
Short communication

Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures

, , , , &
Article: 2291618 | Received 17 Aug 2023, Accepted 28 Nov 2023, Published online: 15 Dec 2023

References

  • Swamy PM, Smith BN. Role of abscisic acid in plant stress tolerance. Curr Sci India. 1999;76:1220–15.
  • Xiong LM, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003;133(1):29–36. doi:10.1104/pp.103.025395.
  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61(1):651–679. doi:10.1146/annurev-arplant-042809-112122.
  • Finkelstein R. Abscisic acid synthesis and response. Arabidopsis Book. 2013;11:e0166. doi:10.1199/tab.0166.
  • Olds CL, Glennon EKK, Luckhart S. Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes Infect. 2018;20(9–10):484–492. doi:10.1016/j.micinf.2018.01.009.
  • Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie AR. Revisiting the basal role of ABA – roles outside of stress. Trends Plant Sci. 2019;24(7):625–635. doi:10.1016/j.tplants.2019.04.008.
  • Davies WJ, Zhang JH. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol. 1991;42(1):55–76. doi:10.1146/annurev.arplant.42.1.55.
  • Davies WJ, Kudoyarova G, Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul. 2005;24(4):285–295. doi:10.1007/s00344-005-0103-1.
  • Zhang JH, Jia WS, Yang JC, Ismail AM. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res. 2006;97(1):111–119. doi:10.1016/j.fcr.2005.08.018.
  • Jiang F, Hartung W. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot. 2008;59(1):37–43. doi:10.1093/jxb/erm127.
  • Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 2007;12(8):343–351. doi:10.1016/j.tplants.2007.06.013.
  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Sci. 2009;324(5930):1068–1071. doi:10.1126/science.1173041.
  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6(5):410–417. doi:10.1016/S1369-5266(03)00092-X.
  • Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotechnol. 1996;7(2):161–167. doi:10.1016/S0958-1669(96)80007-3.
  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol. 2014;21:133–139. doi:10.1016/j.pbi.2014.07.009.
  • Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58(2):221–227. doi:10.1093/jxb/erl164.
  • Ngara R, Ndimba BK, Mock H-P. Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and Sorghum. Plant Biol (Stuttg). 2014;16(6):1029–1032. doi:10.1111/plb.12247.
  • House LR. A guide to sorghum breeding. 2nd ed. Andhra Pradesh (India): International Crops Research Institute for the Semi-Arid Tropics; 1985.
  • Doggett H. Sorghum. 2nd ed. Harlow (Es/England): Longman Scientific & Technical; 1988.
  • Kim KY, Kwon H-K, Kwon S-Y, Lee H-S, Hur Y, Bang J-W, Choi K-S, Kwak S-S. Differential expression of four sweet potato peroxidase genes in response to abscisic acid and ethephon. Phytochem. 2000;54(1):19–22. doi:10.1016/S0031-9422(00)00014-5.
  • Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K, et al. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol. 2004;56(1):29–55. doi:10.1007/s11103-004-2200-0.
  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt M-M, Klein PE, et al. Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol. 2005;58(5):699–720. doi:10.1007/s11103-005-7876-2.
  • Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, Klein PE. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom. 2011;12(1). Artn 514. doi:10.1186/1471-2164-12-514.
  • Bohmer M, Schroeder JI. Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant Journal. 2011;67(1):105–118. doi:10.1111/j.1365-313X.2011.04579.x.
  • Wang Y, Tao X, Tang X-M, Xiao L, Sun J-L, Yan X-F, Li D, Deng H-Y, Ma X-R. Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid. BMC Genom. 2013;14(1):841. doi:10.1186/1471-2164-14-841.
  • Rakwal R, Komatsu S. Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis. Mol Biol Rep. 2004;31(4):217–230. doi:10.1007/s11033-005-2710-0.
  • Rao SR, Ford KL, Cassin AM, Roessner U, Patterson JH, Bacic A. Proteomic and metabolic profiling of rice suspension culture cells as a model to study abscisic acid signaling response pathways in plants. J Proteome Res. 2010;9(12):6623–6634. doi:10.1021/pr100788m.
  • Alvarez S, Choudhury SR, Pandey S. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res. 2014;13(3):1688–1701. doi:10.1021/pr401165b.
  • Zhu MM, Simons B, Zhu N, Oppenheimer DG, Chen SX. Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. J Proteomics. 2010;73(4):790–805. doi:10.1016/j.jprot.2009.11.002.
  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D, Zhu X, Li X, Fang W. Exogenous abscisic acid significantly affects proteome in tea plant (camellia sinensis) exposed to drought stress. Hortic Res-England. 2014;1(1). ARTN 14029. doi:10.1038/hortres.2014.29.
  • Gupta R, Min CW, Kramer K, Agrawal GK, Rakwal R, Park K-H, Wang Y, Finkemeier I, Kim ST. A multi-omics analysis of glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics. 2018;18(7). ARTN 1700366. doi:10.1002/pmic.201700366.
  • He HQ, Li JX. Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves. Biochem Bioph Res Co. 2008;371(4):883–888. doi:10.1016/j.bbrc.2008.05.001.
  • Kline KG, Barrett-Wilt GA, Sussman MR. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. P Natl Acad Sci USA. 2010;107(36):15986–15991. doi:10.1073/pnas.1007879107.
  • Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal. 2013;6(270). ARTN rs8. doi:10.1126/scisignal.2003509.
  • Minkoff BB, Stecker KE, Sussman MR. Rapid phosphoproteomic effects of abscisic acid (ABA) on wild-type and ABA receptor-deficient A. thaliana mutants. Molecular & Cellular Proteomics: MCP. 2015;14(5):1169–1182. doi:10.1074/mcp.M114.043307.
  • Gupta R, Min CW, Meng Q, Agrawal GK, Rakwal R, Kim ST. Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in glycine max leaves. Plant Physiol Bioch. 2018;130:173–180. doi:10.1016/j.plaphy.2018.07.002.
  • Kuwabara C, Arakawa K, Yoshida S. Abscisic acid-induced secretory proteins in suspension-cultured cells of winter wheat. Plant Cell Physiol. 1999;40(2):184–191. doi:10.1093/oxfordjournals.pcp.a029526.
  • Okushima Y, Koizumi N, Kusano T, Sano H. Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol Biol. 2000;42(3):479–488. doi:10.1023/A:1006393326985.
  • Finnie C, Andersen B, Shahpiri A, Svensson B. Proteomes of the barley aleurone layer: a model system for plant signalling and protein secretion. Proteomics. 2011;11(9):1595–1605. doi:10.1002/pmic.201000656.
  • Showalter AM. Structure and function of plant cell wall proteins. Plant Cell. 1993;5(1):9–23. doi:10.1105/tpc.5.1.9.
  • Hoson T. Apoplast as the site of response to environmental signals. J Plant Res. 1998;111(1):167–177. doi:10.1007/BF02507163.
  • Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R. Plant secretome: unlocking secrets of the secreted proteins. Proteomics. 2010;10(4):799–827. doi:10.1002/pmic.200900514.
  • Chivasa S, Goodman HL. Stress-adaptive gene discovery by exploiting collective decision-making of decentralized plant response systems. New Phytol. 2020;225(6):2307–2313. doi:10.1111/nph.16273.
  • Alexandersson E, Ali A, Resjo S, Andreasson E. Plant secretome proteomics. Front Plant Sci. 2013;4. ARTN 9. doi:10.3389/fpls.2013.00009.
  • Krause C, Richter S, Knoll C, Jurgens G. Plant secretome — From cellular process to biological activity. Biochim Biophys Acta. 2013;1834(11):2429–2441. doi:10.1016/j.bbapap.2013.03.024.
  • Ngara R, Rees J, Ndimba BK. Establishment of sorghum cell suspension culture system for proteomics studies. Afr J Biotechnol. 2008;7:744–749.
  • Ramulifho E, Goche T, Van as J, Tsilo TJ, Chivasa S, Ngara R. Establishment and characterization of callus and cell suspension cultures of selected Sorghum bicolor (L.) Moench varieties: a resource for gene discovery in plant stress biology. Agronomy. 2019;9(5):218. doi:10.3390/agronomy9050218.
  • Ngcala MG, Goche T, Brown AP, Chivasa S, Ngara R. Heat stress triggers differential protein accumulation in the extracellular matrix of sorghum cell suspension cultures. Proteomes. 2020;8(4):29. doi:10.3390/proteomes8040029.
  • Ngara R A proteomic analysis of drought and salt stress responsive proteins of different sorghum varieties [ PhD thesis]. University of the Western Cape; 2009.
  • Smith SJ, Kroon JT, Simon WJ, Slabas AR, Chivasa S. A novel function for Arabidopsis CYCLASE1 in programmed cell death revealed by isobaric tags for relative and absolute quantitation (iTRAQ) analysis of extracellular matrix proteins. Mol Cell Proteomics: MCP. 2015;14(6):1556–1568. doi:10.1074/mcp.M114.045054.
  • Ngara R, Ramulifho E, Movahedi M, Shargie NG, Brown AP, Chivasa S. Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress. Sci Rep. 2018;8(1):8671. doi:10.1038/s41598-018-27003-1.
  • Goche T, Shargie NG, Cummins I, Brown AP, Chivasa S, Ngara R. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci Rep. 2020;10(1):11835. doi:10.1038/s41598/020/68735/3.
  • UniProt C, Martin M-J, Orchard S, Magrane M, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bye-A-Jee H, Cukura A. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–D531. doi:10.1093/nar/gkac1052.
  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Biswas, M, Bradley P, Bork P. InterPro: an integrated documentation resource for protein families, domains and functional sites. Brief Bioinform. 2002;3:225–235.
  • Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40(7):1023–1025. doi:10.1038/s41587-021-01156-3.
  • Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol. 1997;115(2):327–334. doi:10.1104/pp.115.2.327.
  • Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–324. doi:10.1016/j.cell.2016.08.029.
  • Taiz L, Zeiger E. Plant Physiol. 5th ed. Sunderland (MA/USA): Sinauer Associates Inc., Publishers; 2010.
  • Kondou Y, Higuchi M, Matsui M. High-throughput characterization of plant gene functions by using gain-of-function technology. Annu Rev Plant Biol. 2010;61(1):373–393. doi:10.1146/annurev-arplant-042809-112143.
  • Bolle C, Schneider A, Leister D. Perspectives on systematic analyses of gene function in Arabidopsis thaliana: new tools, topics and trends. Curr Genomics. 2011;12(1):1–14. doi:10.2174/138920211794520187.
  • Rhee SY, Mutwil M. Towards revealing the functions of all genes in plants. Trends Plant Sci. 2014;19(4):212–221. doi:10.1016/j.tplants.2013.10.006.
  • Davis DJ, Kang BH, Heringer AS, Wilkop TE, Drakakaki G. Unconventional protein secretion in plants. Methods Mol Biol. 2016;1459:47–63. doi:10.1007/978-1-4939-3804-9_3.
  • Chung KP, Zeng Y. An overview of protein secretion in plant cells. Methods Mol Biol. 2017;1662:19–32. doi:10.1007/978-1-4939-7262-3_2.
  • Cheng FY, Williamson JD. Is there leaderless protein secretion in plants? Plant Signal Behav. 2010;5(2):129–131. doi:10.4161/psb.5.2.10304.
  • Ding Y, Robinson DG, Jiang L. Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol. 2014;29:107–115. doi:10.1016/j.ceb.2014.05.008.
  • Robinson D, Ding Y, Jiang LW. Unconventional protein secretion in plants: a critical assessment. Protoplasma. 2016;253(1):31–43. doi:10.1007/s00709-015-0887-1.
  • Smirnoff N. Tansley Review .52. The role of active oxygen in the response of plants to water-deficit and desiccation. New Phytol. 1993;125(1):27–58. doi:10.1111/j.1469-8137.1993.tb03863.x.
  • Bohnert HJ, Sheveleva E. Plant stress adaptations — making metabolism move. Curr Opin Plant Biol. 1998;1(3):267–274. doi:10.1016/s1369-5266(98)80115-5.
  • Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218(1):1–14. doi:10.1007/s00425-003-1105-5.
  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55(1):373–399. doi:10.1146/annurev.arplant.55.031903.141701.
  • van Loon LC, Pierpoint WS, Boller T, Conejero V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep. 1994;12(3):245–264. doi:10.1007/BF02668748.
  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–410. doi:10.1016/s1360-1385(02)02312-9.
  • Wojtaszek P. Oxidative burst: an early plant response to pathogen infection. Biochem J. 1997;322(Pt 3):681–692. doi:10.1042/bj3220681.
  • Tripathy BC, Oelmuller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 2012;7(12):1621–1633. doi:10.4161/psb.22455.
  • Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res. 2010;9(7):3443–3464. doi:10.1021/pr901098p.
  • Dani V, Simon WJ, Duranti M, Croy RR. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics. 2005;5(3):737–745. doi:10.1002/pmic.200401119.
  • Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995;3(9):853–859. doi:10.1016/S0969-2126(01)00220-9.
  • Grover A. Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci. 2012;31(1):57–73. doi:10.1080/07352689.2011.616043.
  • Kasprzewska A. Plant chitinases--regulation and function. Cell Mol Biol Lett. 2003;8:809–824.
  • Vaghela B, Vashi R, Rajput K, Joshi R. Plant chitinases and their role in plant defense: a comprehensive review. Enzyme Microb Technol. 2022;159:110055. doi:10.1016/j.enzmictec.2022.110055.
  • Pinski A, Betekhtin A, Skupien-Rabian B, Jankowska U, Jamet E, Hasterok R. Changes in the cell wall proteome of leaves in response to high temperature stress in Brachypodium distachyon. Int J Mol Sci. 2021;22(13):6750. ARTN 6750. doi: 10.3390/ijms22136750.
  • Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics: MCP. 2007;6(11):1868–1884. doi:10.1074/mcp.M700015-MCP200.
  • Moore JP, Vicre-Gibouin M, Farrant JM, Driouich A. Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant. 2008;134(2):237–245. doi:10.1111/j.1399-3054.2008.01134.x.
  • Hopkins WG, Hüner NPA. Introduction to plant physiology. 4th ed. Hoboken (NJ/USA): John Wiley & Sons; 2009.
  • Keegstra K. Plant cell walls. Plant Physiol. 2010;154(2):483–486. doi:10.1104/pp.110.161240.
  • Underwood W. The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci. 2012;3:85. doi:10.3389/fpls.2012.00085.
  • Tenhaken R. Cell wall remodeling under abiotic stress. Front Plant Sci. 2014;5:771. doi:10.3389/fpls.2014.00771.
  • Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: biosynthesis, construction, and functions. J Integr Plant Biol. 2021;63(1):251–272. doi:10.1111/jipb.13055.
  • Le Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants (Basel). 2015;4(1):112–166. doi:10.3390/plants4010112.
  • Albenne C, Canut H, Jamet E. Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci. 2013;4:111. doi:10.3389/fpls.2013.00111.
  • Cosgrove DJ. Loosening of plant cell walls by expansins. Nature. 2000;407(6802):321–326. doi:10.1038/35030000.
  • Li Y, Jones L, McQueen-Mason S. Expansins and cell growth. Curr Opin Plant Biol. 2003;6(6):603–610. doi:10.1016/j.pbi.2003.09.003.
  • Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–172. doi:10.1016/j.pbi.2015.05.014.
  • Wu Y, Spollen WG, Sharp RE, Hetherington PR, Fry SC. Root growth maintenance at low water potentials (increased activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid). Plant Physiol. 1994;106(2):607–615. doi:10.1104/pp.106.2.607.
  • Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments. Plant, Cell Environ. 2019;42(10):2931–2944. doi:10.1111/pce.13633.
  • Moloi SJ, Ngara R. The roles of plant proteases and protease inhibitors in drought response: a review. Front Plant Sci. 2023;14:1165845. doi:10.3389/fpls.2023.1165845.
  • Wang Y, Wang Y, Wang Y. Apoplastic proteases: powerful weapons against pathogen infection in plants. Plant Commun. 2020;1(4):100085. doi:10.1016/j.xplc.2020.100085.
  • Godson A, van der Hoorn RAL, Klemenčič M. The front line of defence: a meta-analysis of apoplastic proteases in plant immunity. J Exp Bot. 2021;72(9):3381–3394. doi:10.1093/jxb/eraa602.
  • Missaoui K, Gonzalez-Klein, Z, Pazos-Castro, D, Hernandez-Ramirez, G,Garrido-Arandia, M, Brini, F, Diaz-Perales, A,Tome-Amat, J. Plant non-specific lipid transfer proteins: An overview. Plant Physiol Bioch. 2022;171:115–127. doi:10.1016/j.plaphy.2021.12.026.
  • Radauer C, Lackner P, Breiteneder H. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol. 2008;8(1):286. Artn 286. doi: 10.1186/1471-2148-8-286.
  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci. 2010;15(7):395–401. doi:10.1016/j.tplants.2010.04.006.
  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S. Abscisic acid and abiotic stress tolerance – different tiers of regulation. J Plant Physiol. 2014;171(7):486–496. doi:10.1016/j.jplph.2013.12.007.
  • Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot-London. 2011;107(7):1127–1140. doi:10.1093/aob/mcq243.
  • Shao H-B, Chu L-Y, Jaleel CA, Manivannan P, Panneerselvam R, Shao M-A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol. 2009;20(2):131–151. doi:10.1080/07388550902869792.
  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43. doi:10.1111/nph.12797.