389
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Systematic analysis of the thioredoxin gene family in Citrus sinensis: identification, phylogenetic analysis, and gene expression patterns

Article: 2294426 | Received 03 Nov 2023, Accepted 08 Dec 2023, Published online: 17 Dec 2023

References

  • Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q. Molecular signatures between citrus and candidatus liberibacter asiaticus. PLoS Pathog. 2021;17(12):e1010071. doi:10.1371/journal.ppat.1010071.
  • Etebu E, Nwauzoma AB. A review on sweet orange (Citrus sinensis L osbeck): health, diseases and management. Am J Res Comm. 2014;2:33–10.
  • Milne AE, Teiken C, Deledalle F, van den Bosch F, Gottwald T, McRoberts N. Growers’ risk perception and trust in control options for huanglongbing citrus-disease in Florida and California. Crop Prot. 2018;114:177–186. doi:10.1016/j.cropro.2018.08.028.
  • Bové JM. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol. 2006; 88(1):7–37.
  • Ma W, Pang Z, Huang X, Xu J, Pandey SS, Li J, Achor DS, Vasconcelos FNC, Hendrich C, Huang Y, et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat Commun. 2022;13(1):529. doi:10.1038/s41467-022-28189-9.
  • Gottwald TR, Graça J, Bassanezi RB. Citrus huanglongbing: the pathogen and its impact. Plant Health Prog. 2007;8(1):31. doi:10.1094/PHP-2007-0906-01-RV.
  • Clark K, Franco JY, Schwizer S, Pang Z, Hawara E, Liebrand TWH, Pagliaccia D, Zeng L, Gurung FB, Wang P, et al. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nat Commun. 2018;9(1):1718. doi:10.1038/s41467-018-04140-9.
  • Claeys H, Van Landeghem S, Dubois M, Maleux K, Inzé D. What is stress? dose-response effects in commonly used in vitro stress assays. Plant Physiol. 2014;165(2):519–527. doi:10.1104/pp.113.234641.
  • Zhang H, Cheng D, Liu H, Zheng H. Differential responses of a thioredoxin-like protein gene to Vibrio parahaemolyticus challenge in the noble scallop chlamys nobilis with different total carotenoids content. Fish Shellfish Immunol. 2018;72:377–382. doi:10.1016/j.fsi.2017.11.020.
  • Gelhaye E, Rouhier N, Navrot N, Jacquot J-P. The plant thioredoxin system. Cell Mol Life Sci. 2005;62(1):24–35. doi:10.1007/s00018-004-4296-4.
  • Mata-Pérez C, Spoel SH. Thioredoxin-mediated redox signalling in plant immunity. Plant Sci. 2019;279:27–33. doi:10.1016/j.plantsci.2018.05.001.
  • Geigenberger P, Thormählen I, Daloso DM, Fernie AR. The unprecedented versatility of the plant‎ thioredoxin system. Trends Plant Sci. 2017;22(3):249–262. doi:10.1016/j.tplants.2016.12.008.
  • Spínola MC, Pérez‐Ruiz JM, Pulido P, Kirchsteiger K, Guinea M, González M, Cejudo FJ. NTRC new ways of using NADPH in the chloroplast. Physiol Plant. 2008;133(3):516–24. doi:10.1111/j.1399-3054.2008.01088.x.
  • Powis G, Mustacich D, Coon A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med. 2000;29(3–4):312–322. doi:10.1016/S0891-5849(00)00313-0.
  • Zhang J, Zhao T, Yan F, Wang L, Tang Y, Wang Y, Zhang C. Genome-wide identification and expression analysis of thioredoxin (Trx) genes in seed development of vitis vinifera. J Plant Growth Regul. 2022;2021(7):1–16. doi:10.1007/s00344-021-10494-0.
  • Nuruzzaman M, Sharoni AM, Satoh K, Al-Shammari T, Shimizu T, Sasaya T, Omura T, Kikuchi S. The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Bioph Res Co. 2012;423(2):417–23. doi:10.1016/j.bbrc.2012.05.142.
  • Liu H, Li Y, Huang X. Genome-wide analysis of the thioredoxin gene family in gossypium hirsutum L. and the role of the atypical thioredoxin gene GhTRXL3-2 in flowering. J Plant Biol. 2021;64(5):461–73. doi:10.1007/s12374-021-09318-1.
  • Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A. A small family of chloroplast atypical thioredoxins. Plant Physiol. 2009;149(3):1240–1250. doi:10.1104/pp.108.128314.
  • Thormaehlen I, Ruber J, Von Roepenack‐Lahaye E, Ehrlich SM, Massot V, Huemmer C, TEZYCKA J, ISSAKIDIS‐BOURGUET E, GEIGENBERGER P. Inactivation of thioredoxin f 1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants. Plant, Cell & Environ. 2013;36(1):16–29. doi:10.1111/j.1365-3040.2012.02549.x.
  • Thormählen I, Meitzel T, Groysman J, Öchsner AB, von Roepenack-Lahaye E, Naranjo B, Cejudo, FJ and Geigenberger, P. Thioredoxin f 1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiol. 2015;169:1766–86. doi:10.1104/pp.15.01122.
  • Meng L, Wong JH, Feldman LJ, Lemaux PG, Buchanan BB. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci USA. 2010;107(8):3900–5. doi:10.1073/pnas.0913759107.
  • Courteille A, Vesa S, Sanz-Barrio R, Cazalé A-C, Becuwe-Linka N, Farran I, Havaux M, Rey P, Rumeau D. Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiol. 2013;161(1):508–20. doi:10.1104/pp.112.207019.
  • Zhang X, Tang Y, Wang G, Wang Y, Zhang C. Cloning, expression and fusion expression of thioredoxin gene (Trx) in grape (vitis vinifera). J Agri Biotechnol. 2015;23:1131–40.
  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot J-P, Manieri W, Schürmann P, Droux M, et al. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA. 2004;101(8):2642–7. doi:10.1073/pnas.0308583101.
  • Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J, et al. An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant. 2017;10(3):483–497. doi:10.1016/j.molp.2017.02.002.
  • Wu F, Li Q, Yan H, Zhang D, Jiang G, Jiang Y, Duan X. Characteristics of three thioredoxin genes and their role in chilling tolerance of harvested banana fruit. Int J Mol Sci. 2016;17(9):1526. doi:10.3390/ijms17091526.
  • Zhang C-J, Guo Y. OsTRXh1 regulates the redox state of the apoplast and influences stress responses in rice. Plant Signal Behav. 2012;7(3):440–442. doi:10.4161/psb.19244.
  • Liu H, Wang X, Liu S, Huang Y, Guo Y-X, Xie W-Z, Liu H, Tahir Ul Qamar M, Xu Q, Chen L-L, et al. Citrus pan-genome to breeding database (CPBD): a comprehensive genome database for citrus breeding. Mol Plant. 2022;15(10):1503–1505. doi:10.1016/j.molp.2022.08.006.
  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412–D9. doi:10.1093/nar/gkaa913.
  • Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013;41(12):e121–e. doi:10.1093/nar/gkt263.
  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265–D8. doi:10.1093/nar/gkz991.
  • Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46(D1):D493–D6. doi:10.1093/nar/gkx922.
  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. Springer Protocols Handbooks. Totowa, NJ: Humana Press; 2005.
  • Chou K-C, Shen H-B, Newbigin E. Plant-mPloc: a top-down strategy to augment the power for predicting Plant protein subcellular localization. PLoS ONE. 2010;5(6):e11335. doi:10.1371/journal.pone.0011335.
  • Reiser L, Subramaniam S, Zhang P, Berardini T. Using the Arabidopsis information resource (TAIR) to find information about Arabidopsis genes. Curr Protoc. 2022;2(10):e574. doi:10.1002/cpz1.574.
  • Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20(1):348–55. doi:10.1111/1755-0998.13096.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi:10.1093/molbev/mst010.
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589. doi:10.1038/nmeth.4285.
  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. doi:10.1093/molbev/msaa015.
  • Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90. doi:10.1101/gr.849004.
  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. doi:10.1016/j.molp.2020.06.009.
  • Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43(W1):W39–W49. doi:10.1093/nar/gkv416.
  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze, P, Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7. doi:10.1093/nar/30.1.325.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262.
  • Huang G, Liu Z, Gu B, Zhao H, Jia J, Fan G, Meng Y, Du Y, Shan W. An RXLR effector secreted by phytophthora parasitica is a virulence factor and triggers cell death in various plants. Mol Plant Pathol. 2019;20(3):356–71. doi:10.1111/mpp.12760.
  • Chen C, Zhang K, Khurshid M, Li J, He M, Georgiev MI, Zhang X, Zhou M. MYB transcription repressors regulate plant secondary metabolism. CRC Crit Rev Plant Sci. 2019;38(3):159–70. doi:10.1080/07352689.2019.1632542.
  • Alves AMM, Reis SPM, Gramacho KP, Micheli F. The glutathione peroxidase family of theobroma cacao: involvement in the oxidative stress during witches’ broom disease. Int J Biol Macromol. 2020;164:3698–3708. doi:10.1016/j.ijbiomac.2020.08.222.
  • Li Y, Han L, Wang H, Zhang J, Sun S, Feng D, Yang C-L, Sun Y-D, Zhong N-Q, Xia G-X, et al. The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to verticillium dahliae infection in cotton. Plant Physiol. 2016;170(4):2392–2406. doi:10.1104/pp.15.01930.
  • Sun L, Ren H, Liu R, Li B, Wu T, Sun F, Liu H, Wang X, Dong H. An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant Microbe Interact. 2010;23(11):1470–85. doi:10.1094/MPMI-01-10-0029.
  • Wu H, Hu Y, Fu S, Zhou C, Wang X. Coordination of multiple regulation pathways contributes to the tolerance of a wild citrus species (citrus ichangensis ‘2586’) against Huanglongbing. Physiol Mol Plant Pathol. 2020;109:101457. doi:10.1016/j.pmpp.2019.101457.
  • Ribeiro C, Xu J, Hendrich C, Pandey SS, Yu Q, Gmitter FG Jr, Wang N. Seasonal transcriptome profiling of susceptible and tolerant citrus cultivars to citrus Huanglongbing. Phytopathology®. 2023;113(2):286–98. doi:10.1094/PHYTO-05-22-0179-R.
  • Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin J-M, Knaff DB, Miginiac-Maslow M. The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem. 2003;278(26):23747–52. doi:10.1074/jbc.M302077200.