939
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Effects of fluorescent tags and activity status on the membrane localization of ROP GTPases

, & ORCID Icon
Article: 2306790 | Received 10 Dec 2023, Accepted 08 Jan 2024, Published online: 25 Jan 2024

References

  • Muroyama A, Bergmann DC. Plant cell polarity: creating diversity from inside the box. Annu Rev Cell Dev Biol. 2019;35(1):309–8. doi:10.1146/annurev-cellbio-100818-125211.
  • Muller S. Update: on selected ROP cell polarity mechanisms in plant cell morphogenesis. Plant Physiol. 2023;193(1):26–41. doi:10.1093/plphys/kiad229.
  • Pan X, Perez-Henriquez P, Van Norman JM, Yang Z. Membrane nanodomains: dynamic nanobuilding blocks of polarized cell growth. Plant Physiol. 2023;193(1):83–97. doi:10.1093/plphys/kiad288.
  • Smokvarska M, Jaillais Y, Martiniere A. Function of membrane domains in rho-of-plant signaling. Plant Physiol. 2021;185(3):663–681. doi:10.1093/plphys/kiaa082.
  • Feiguelman G, Fu Y, Yalovsky S. ROP GTPases structure-function and signaling pathways. Plant Physiol. 2018;176(1):57–79. doi:10.1104/pp.17.01415.
  • Li E, Zhang YL, Qin Z, Xu M, Qiao Q, Li S, Li SW, Zhang Y. Signaling network controlling ROP-mediated tip growth in Arabidopsis and beyond. Plant Commun. 2023;4(1):100451. doi:10.1016/j.xplc.2022.100451.
  • Ou H, Yi P. ROP GTPase-dependent polarity establishment during tip growth in plants. New Phytol. 2022;236(1):49–57. doi:10.1111/nph.18373.
  • Lin W, Yang Z. Unlocking the mechanisms behind the formation of interlocking pavement cells. Curr Opin Plant Biol. 2020;57:142–154. doi:10.1016/j.pbi.2020.09.002.
  • Xu H, Giannetti A, Sugiyama Y, Zheng W, Schneider R, Watanabe Y, Oda Y, Persson S. Secondary cell wall patterning-connecting the dots, pits and helices. Open Biol. 2022;12(5):210208. doi:10.1098/rsob.210208.
  • Naramoto S, Hata Y, Fujita T, Kyozuka J. The bryophytes physcomitrium patens and marchantia polymorpha as model systems for studying evolutionary cell and developmental biology in plants. Plant Cell. 2022;34(1):228–246. doi:10.1093/plcell/koab218.
  • Burkart GM, Baskin TI, Bezanilla M. A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion. J Cell Sci. 2015;128(14):2553–2564. doi:10.1242/jcs.172445.
  • Mulvey H, Dolan L. RHO GTPase of plants regulates polarized cell growth and cell division orientation during morphogenesis. Curr Biol. 2023;33(14):2897–2911. doi:10.1016/j.cub.2023.06.015.
  • Rong D, Zhao S, Tang W, Luo N, He H, Wang Z, Ma H, Huang Y, Yao X, Pan X. et al. ROP signaling regulates spatial pattern of cell division and specification of meristem notch. Proc Natl Acad Sci U S A. 2022;119(47):e2117803119. doi:10.1073/pnas.2117803119.
  • Yi P, Goshima G. Rho of plants GTPases and cytoskeletal elements control nuclear positioning and asymmetric cell division during Physcomitrella patens branching. Curr Biol. 2020;30(14):2860–2868. doi:10.1016/j.cub.2020.05.022.
  • Lin Y, Wang Y, Zhu JK, Yang Z. Localization of a rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell. 1996;8(2):293–303. doi:10.2307/3870272.
  • Molendijk AJ. Arabidopsis thaliana rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 2001;20(11):2779–2788. doi:10.1093/emboj/20.11.2779.
  • Fiona Fuchs VA, Denninger P, Župunski M, Jaillais Y, Engel U, Grossmann G. Nanodomain-mediated lateral sorting drives polarization of the small GTPase ROP2 in the plasma membrane of root hair cells. bioRxiv. 2021. doi:10.1101/2021.09.10.459822.
  • Platre MP, Bayle V, Armengot L, Bareille J, Marques-Bueno MDM, Creff A, Maneta-Peyret L, Fiche JB, Nollmann M, Miege C. et al. Developmental control of plant rho GTPase nano-organization by the lipid phosphatidylserine. Sci. 2019;364(6435):57–62. doi:10.1126/science.aav9959.
  • Smokvarska M, Francis C, Platre MP, Fiche JB, Alcon C, Dumont X, Nacry P, Bayle V, Nollmann M, Maurel C. et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr Biol. 2020;30(23):4654–4664. doi:10.1016/j.cub.2020.09.013.
  • Sternberg H, Buriakovsky E, Bloch D, Gutman O, Henis YI, Yalovsky S. Formation of self-organizing functionally distinct rho of plants domains involves a reduced mobile population. Plant Physiol. 2021;187(4):2485–2508. doi:10.1093/plphys/kiab385.
  • Bao L, Ren J, Nguyen M, Slusarczyk AS, Thole JM, Martinez SP, Huang J, Fujita T, Running MP. The cellular function of ROP GTPase prenylation is important for multicellularity in the moss physcomitrium patens. Development. 2022;149(12):dev200279. doi:10.1242/dev.200279.
  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol. 1999;145(2):317–330. doi:10.1083/jcb.145.2.317.
  • Cheng X, Mwaura BW, Chang Stauffer SR, Bezanilla M. A fully functional ROP fluorescent fusion protein reveals roles for this GTPase in subcellular and tissue-level patterning. Plant Cell. 2020;32(11):3436–3451. doi:10.1105/tpc.20.00440.
  • Ruan J, Lai L, Ou H, Yi P. Two subtypes of GTPase-activating proteins coordinate tip growth and cell size regulation in Physcomitrium patens. Nat Commun. 2023;14(1):7084. doi:10.1038/s41467-023-42879-y.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi:10.1038/s41586-021-03819-2.
  • Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J. et al. Protein complex prediction with AlphaFold-Multimer. 2022. 10.1101/2021.10.04.463034. bioRxiv:2021.2010.2004.463034
  • Eklund DM, Svensson EM, Kost B. Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth. J Exp Bot. 2010;61(7):1917–1937. doi:10.1093/jxb/erq080.
  • Bendezu FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG, Lew D. Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLoS Biol. 2015;13(4):e1002097. doi:10.1371/journal.pbio.1002097.
  • Thomas C, Fricke I, Scrima A, Berken A, Wittinghofer A. Structural evidence for a common intermediate in small G protein-GEF reactions. Mol Cell. 2007;25(1):141–149. doi:10.1016/j.molcel.2006.11.023.
  • Nagashima Y, Tsugawa S, Mochizuki A, Sasaki T, Fukuda H, Oda Y. A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels. Sci Rep. 2018;8(1):11542. doi:10.1038/s41598-018-29543-y.
  • Oda Y, Fukuda H. Initiation of cell wall pattern by a rho- and microtubule-driven symmetry breaking. Sci. 2012;337(6100):1333–1336. doi:10.1126/science.1222597.
  • Schaefer A, Hohner K, Berken A, Wittinghofer A. The unique plant RhoGAPs are dimeric and contain a CRIB motif required for affinity and specificity towards cognate small G proteins. Biopolymers. 2011a;95(6):420–433. doi:10.1002/bip.21601.
  • Schaefer A, Miertzschke M, Berken A, Wittinghofer A. Dimeric plant RhoGAPs are regulated by its CRIB effector motif to stimulate a sequential GTP hydrolysis. J Mol Biol. 2011b;411(4):808–822. doi:10.1016/j.jmb.2011.06.033.
  • Wu G, Li H, Yang Z. Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation. Plant Physiol. 2000;124(4):1625–1636. doi:10.1104/pp.124.4.1625.
  • Klahre U, Kost B. Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell. 2006;18(11):3033–3046. doi:10.1105/tpc.106.045336.
  • Osmani N, Peglion F, Chavrier P, Etienne-Manneville S. Cdc42 localization and cell polarity depend on membrane traffic. J Cell Biol. 2010;191(7):1261–1269. doi:10.1083/jcb.201003091.
  • Wedlich-Soldner R, Altschuler S, Wu L, Li R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Sci. 2003;299(5610):1231–1235. doi:10.1126/science.1080944.
  • Marco E, Wedlich-Soldner R, Li R, Altschuler SJ, Wu LF. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell. 2007;129(2):411–422. doi:10.1016/j.cell.2007.02.043.
  • Ge FR, Chai S, Li S, Zhang Y. Targeting and signaling of rho of plants guanosine triphosphatases require synergistic interaction between guanine nucleotide inhibitor and vesicular trafficking. J Integr Plant Biol. 2020;62(10):1484–1499. doi:10.1111/jipb.12928.
  • Guo J, Yang Z, Vissenberg K. Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes. J Exp Bot. 2020;71(8):2428–2438. doi:10.1093/jxb/eraa134.
  • Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc. 2004;214(2):159–173. doi:10.1111/j.0022-2720.2004.01348.x.
  • Wang M, Casey PJ. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol. 2016;17(2):110–122. doi:10.1038/nrm.2015.11.
  • Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant Journal. 2004;40(3):419–427. doi:10.1111/j.1365-313X.2004.02206.x.
  • Sorek N, Gutman O, Bar E, Abu-Abied M, Feng X, Running MP, Lewinsohn E, Ori N, Sadot E, Henis YI. et al. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. Plant Physiol. 2011;155(2):706–720. doi:10.1104/pp.110.166850.
  • Bracha K, Lavy M, Yalovsky S. The Arabidopsis AtSTE24 is a CAAX protease with broad substrate specificity. J Biol Chem. 2002;277(33):29856–29864. doi:10.1074/jbc.M202916200.
  • Bracha-Drori K, Shichrur K, Lubetzky TC, Yalovsky S. Functional analysis of Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular protein targeting. Plant Physiol. 2008;148(1):119–131. doi:10.1104/pp.108.120477.
  • Woods B, Lew DJ. Polarity establishment by Cdc42: key roles for positive feedback and differential mobility. Small GTPases. 2019;10(2):130–137. doi:10.1080/21541248.2016.1275370.
  • Gendre D, Baral A, Dang X, Esnay N, Boutte Y, Stanislas T, Vain T, Claverol S, Gustavsson A, Lin D. et al. Rho-of-plant activated root hair formation requires Arabidopsis YIP4a/b gene function. Development. 2019;146(5):dev168559. doi:10.1242/dev.168559.
  • Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z. A tip-localized RhoGAP controls cell polarity by globally inhibiting rho GTPase at the cell apex. Curr Biol. 2008;18(24):1907–1916. doi:10.1016/j.cub.2008.11.057.
  • Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S. A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol. 2007;17(11):947–952. doi:10.1016/j.cub.2007.04.038.
  • Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E, Yalovsky S. Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell. 2005;16(4):1913–1927. doi:10.1091/mbc.e04-07-0562.
  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature. 2005;438(7070):1013–1016. doi:10.1038/nature04198.
  • Feng QN, Kang H, Song SJ, Ge FR, Zhang YL, Li E, Li S, Zhang Y. Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes. Plant Physiol. 2016;170(2):841–856. doi:10.1104/pp.15.01600.
  • Klahre U, Becker C, Schmitt AC, Kost B. Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant Journal. 2006;46(6):1018–1031. doi:10.1111/j.1365-313X.2006.02757.x.
  • Bischoff F, Vahlkamp L, Molendijk A, Palme K. Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis. Plant Mol Biol. 2000;42(3):515–530. doi:10.1023/a:1006341210147.
  • Golding AE, Visco I, Bieling P, Bement WM. Extraction of active RhoGTPases by RhoGDI regulates spatiotemporal patterning of RhoGTPases. Elife. 2019;8:e50471. doi:10.7554/eLife.50471.
  • Abo A, Webb MR, Grogan A, Segal AW. Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J. 1994;298(3):585–591. doi:https://doi.org/10.1042/bj2980585.