92
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The status of COI and 12S rRNA DNA barcode reference libraries for freshwater fish in South Africa: Implications for future eDNA projects

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 97-105 | Received 01 Dec 2022, Accepted 19 Oct 2023, Published online: 23 Nov 2023

References

  • Adams J, Whitfield A, Van Niekerk L. 2020. A socio-ecological systems approach towards future research for the restoration, conservation and management of southern African estuaries. African Journal of Aquatic Science 45: 231–241. https://doi.org/10.2989/16085914.2020.1751980.
  • Ahmed S, Ibrahim M, Nantasenamat C, Nisar MF, Malik AA, Waheed R, Ahmed MZ, Ojha SC, Alam MK. 2022. Pragmatic applications and universality of DNA barcoding for substantial organisms at species level: a review to explore a way forward. BioMed Research International 2022: 1846485. https://doi.org/10.1155/2022/1846485.
  • Alam MJ, Kim N-K, Andriyono S, Choi H-k, Lee J-H, Kim H-W. 2020. Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding. PeerJ 8: e9508. https://doi.org/10.7717/peerj.9508.
  • Antognazza CM, Britton RJ, Read DS, Goodall T, Mantzouratou A, De Santis V, Davies P, Aprahamian M, Franklin E, Hardouin EA, Andreou D. 2021. Application of eDNA metabarcoding in a fragmented lowland river: spatial and methodological comparison of fish species composition. Environmental DNA 3: 458–471. https://doi.org/10.1002/edn3.136.
  • Belle CC, Stoeckle BC, Geist J. 2019. Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1996–2009. https://doi.org/10.1002/aqc.3208.
  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2012. GenBank. Nucleic Acids Research 41: D36–D42. https://doi.org/10.1093/nar/gks1195.
  • Berger CS, Hernandez C, Laporte M, Côté G, Paradis Y, Kameni T DW, Normandeau E, Bernatchez L. 2020. Fine-scale environmental heterogeneity shapes fluvial fish communities as revealed by eDNA metabarcoding. Environmental DNA 2: 647–666. https://doi.org/10.1002/edn3.129.
  • Bucklin A, Steinke D, Blanco-Bercial L. 2011. DNA barcoding of marine metazoa. Annual Review of Marine Science 3: 471–508. https://doi.org/10.1146/annurev-marine-120308-080950.
  • Bylemans J, Furlan EM, Pearce L, Daly T, Gleeson DM. 2016. Improving the containment of a freshwater invader using environmental DNA (eDNA) based monitoring. Biological Invasions 18: 3081–3089. https://doi.org/10.1007/s10530-016-1203-5.
  • Bylemans J, Gleeson DM, Hardy CM, Furlan E. 2018. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: a case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). Ecology and Evolution 8: 8697–8712. https://doi.org/10.1002/ece3.4387.
  • Chakona A, Jordaan MS, Raimondo DC, Bills RI, Skelton PH, van der Colff D. 2022. Diversity, distribution and extinction risk of native freshwater fishes of South Africa. Journal of Fish Biology 100: 1044–1061. https://doi.org/10.1111/jfb.15011.
  • Cilleros K, Valentini A, Allard L, Dejean T, Etienne R, Grenouillet G, Iribar A, Taberlet P, Vigouroux R, Brosse S. 2019. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes. Molecular Ecology Resources 19: 27–46. https://doi.org/10.1111/1755-0998.12900.
  • Clusa L, García Vázquez E. 2018. A simple, rapid method for detecting seven common invasive fish species in Europe from environmental DNA. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 619–629. https://doi.org/10.1002/aqc.2890.
  • Collins RA, Bakker J, Wangensteen OS, Soto AZ, Corrigan L, Sims DW, Genner MJ, Mariani S. 2019. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution 10: 1985–2001. https://doi.org/10.1111/2041-210X.13276.
  • da Silva JM, Willows-Munro S. 2016. A review of over a decade of DNA barcoding in South Africa: a faunal perspective. African Zoology 51: 1–12. https://doi.org/10.1080/15627020.2016.1151377.
  • Dallas H, Shelton J, Sutton T, Tri Cuptura D, Kajee M, Job N. 2022. The Freshwater Biodiversity Information System (FBIS) – mobilising data for evaluating long-term change in South African rivers. African Journal of Aquatic Science 47: 291–306. https://doi.org/10.2989/16085914.2021.1982672.
  • Dallas HF, Rivers-Moore N. 2014. Ecological consequences of global climate change for freshwater ecosystems in South Africa. South African Journal of Science 110: 1–11. https://doi.org/10.1590/sajs.2014/20130274.
  • Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P. 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10: 20140562. https://doi.org/10.1098/rsbl.2014.0562.
  • Desai M, Hanzen C, Downs CT, O’Brien GC. 2021. Environmental drivers of ichthyofauna community composition of the river ecosystems draining the Lake St. Lucia basin, South Africa. Hydrobiologia 848: 3539–3554. https://doi.org/10.1007/s10750-021-04609-7.
  • Duarte S, Vieira PE, Costa FO. 2020. Assessment of species gaps in DNA barcode libraries of non-indigenous species (NIS) occurring in European coastal regions. Metabarcoding and Metagenomics 4: e55162. https://doi.org/10.3897/mbmg.4.55162.
  • Dubreuil T, Baudry T, Mauvisseau Q, Arqué A, Courty C, Delaunay C, Sweet M, Grandjean F. 2022. The development of early monitoring tools to detect aquatic invasive species: eDNA assay development and the case of the armored catfish Hypostomus robinii. Environmental DNA 4: 349–362. https://doi.org/10.1002/edn3.260.
  • Dudgeon D. 2010. Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Current Opinion in Environmental Sustainability 2: 422–430. https://doi.org/10.1016/j.cosust.2010.09.001.
  • Dudgeon D. 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29: R960–R967. https://doi.org/10.1016/j.cub.2019.08.002.
  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182. https://doi.org/10.1017/S1464793105006950.
  • Elbrecht V, Vamos EE, Meissner K, Aroviita J, Leese F. 2017. Assessing strengths and weaknesses of DNA metabarcodingbased macroinvertebrate identification for routine stream monitoring. Methods in Ecology and Evolution 8: 1265–1275. https://doi.org/10.1111/2041-210X.12789.
  • Ellender B, Weyl O. 2014. A review of current knowledge, risk and ecological impacts associated with non-native freshwater fish introductions in South Africa. Aquatic Invasions 9: 117–132. https://doi.org/10.3391/ai.2014.9.2.01.
  • Ellender BR, Wasserman RJ, Chakona A, Skelton PH, Weyl OLF. 2017. A review of the biology and status of Cape Fold Ecoregion freshwater fishes. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 867–879. https://doi.org/10.1002/aqc.2730.
  • Elsaied H, Soliman T, Abdelmageed AA, Abu-Taleb HT. 2021. Applications and challenges of DNA barcoding and metabarcoding in African fisheries. The Egyptian Journal of Aquatic Research 47: 1–12. https://doi.org/10.1016/j.ejar.2021.02.003.
  • Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, Mahon AR, Pfrender ME, Lamberti GA, Lodge DM. 2016. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources 16: 29–41. https://doi.org/10.1111/1755-0998.12433.
  • Evans W, Downs CT, Burnett MJ, O’Brien GC. 2022. Assessing fish community response to water quality and habitat stressors in KwaZulu-Natal, South Africa. African Journal of Aquatic Science 47: 47–65. https://doi.org/10.2989/16085914.2021.1952158.
  • Fernández S, Rodríguez S, Martínez JL, Borrell YJ, Ardura A, García-Vázquez E. 2018. Evaluating freshwater macroinvertebrates from eDNA metabarcoding: a river Nalón case study. PLoS ONE 13: e0201741. https://doi.org/10.1371/journal.pone.0201741.
  • Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, Taberlet P, Pompanon F. 2010. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11:434. https://doi.org/10.1186/1471-2164-11-434.
  • Fierro P, Valdovinos C, Arismendi I, Díaz G, Ruiz De Gamboa M, Arriagada L. 2019. Assessment of anthropogenic threats to Chilean Mediterranean freshwater ecosystems: literature review and expert opinions. Environmental Impact Assessment Review 77: 114–121. https://doi.org/10.1016/j.eiar.2019.02.010.
  • Froese R, Pauly D. 2023. FishBase. World Wide Web Electronic Publication. Available at http://www.fishbase.org/Search.php. [Accessed 1 February 2023].
  • Fujii K, Doi H, Matsuoka S, Nagano M, Sato H, Yamanaka H. 2019. Environmental DNA metabarcoding for fish community analysis in backwater lakes: a comparison of capture methods. PLoS ONE 14: e0210357. https://doi.org/10.1371/journal.pone.0210357.
  • García de Amézaga Quintanilla L. 2021. Increasing reference databases for DNA barcoding and metabarcoding of marine fish. Bachelor’s thesis, Universidad Católica de Valencia, Spain.
  • García-Machado E, Laporte M, Normandeau E, Hernández C, Côté G, Paradis Y, Mingelbier M, Bernatchez L. 2022. Fish community shifts along a strong fluvial environmental gradient revealed by eDNA metabarcoding. Environmental DNA 4: 117–134. https://doi.org/10.1002/edn3.221.
  • GenBank, NCBI (National Center for Biotechnology Information). Available at https://www.ncbi.nlm.nih.gov [Accessed 1 February 2023].
  • Gillet B, Cottet M, Destanque T, Kue K, Descloux S, Chanudet V, Hughes S. 2018. Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year survey significantly improves number of fish detected around a South East Asian reservoir. PLoS One 13: e0208592. https://doi.org/10.1371/journal.pone.0208592.
  • Govender IH, Sahlin U, O’Brien GC. 2022. Bayesian network applications for sustainable holistic water resources management: modeling opportunities for South Africa. Risk Analysis 42: 1346–1364. https://doi.org/10.1111/risa.13798.
  • Hallam J, Clare EL, Jones JI, Day JJ. 2021. Biodiversity assessment across a dynamic riverine system: a comparison of eDNA metabarcoding versus traditional fish surveying methods. Environmental DNA 3: 1247–1266. https://doi.org/10.1002/edn3.241.
  • Hänfling B, Lawson Handley L, Read DS, Hahn C, Li J, Nichols P, Blackman RC, Oliver A, Winfield IJ. 2016. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology 25: 3101–3119. https://doi.org/10.1111/mec.13660.
  • Hebert PDN, Cywinska A, Ball SL, Dewaard JR. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 313–321. https://doi.org/10.1098/rspb.2002.2218.
  • Heywood V. 2011. Monitoring of areas and species/populations to assess effectiveness of conservation/management actions. In: Hunter D, Heywood V (eds), Crop wild relatives: a manual of in situ conservation.: London: Earthscan. pp 295–313.
  • Hinlo R, Furlan E, Suitor L, Gleeson D. 2017. Environmental DNA monitoring and management of invasive fish: comparison of eDNA and fyke netting. Management of Biological Invasions 8: 89–100. https://doi.org/10.3391/mbi.2017.8.1.09.
  • Jeunen G-J, Lipinskaya T, Gajduchenko H, Golovenchik V, Moroz M, Rizevsky V, Semenchenko V, Gemmell NJ. 2022. Environmental DNA (eDNA) metabarcoding surveys show evidence of non-indigenous freshwater species invasion to new parts of Eastern Europe. Metabarcoding and Metagenomics 6: e68575. https://doi.org/10.3897/mbmg.6.e68575.
  • Jo T, Ikeda S, Fukuoka A, Inagawa T, Okitsu J, Katano I, Doi H, Nakai K, Ichiyanagi H, Minamoto T. 2021. Utility of environmental DNA analysis for effective monitoring of invasive fish species in reservoirs. Ecosphere 12: e03643. https://doi.org/10.1002/ecs2.3643.
  • Jones L, Twyford AD, Ford CR, Rich TCG, Davies H, Forrest LL, Hart ML, McHaffie H, Brown MR, Hollingsworth PM, Vere N. 2021. Barcode UK: a complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. Molecular Ecology Resources 21: 2050–2062. https://doi.org/10.1111/1755-0998.13388.
  • Keck F, Blackman RC, Bossart R, Brantschen J, Couton M, Hürlemann S, Kirschner D, Locher N, Zhang H, Altermatt F. 2022. Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Molecular Ecology 31: 1820–1835. https://doi.org/10.1111/mec.16364.
  • Kelly RP, Port JA, Yamahara KM, Crowder LB. 2014. Using Environmental DNA to census marine fishes in a large mesocosm. PLoS One 9: e86175. https://doi.org/10.1371/journal.pone.0086175.
  • Keskin E. 2014. Detection of invasive freshwater fish species using environmental DNA survey. Biochemical Systematics and Ecology 56: 68–74. https://doi.org/10.1016/j.bse.2014.05.003.
  • Keskin E, Unal EM, Atar HH. 2016. Detection of rare and invasive freshwater fish species using eDNA pyrosequencing: Lake Iznik ichthyofauna revised. Biochemical Systematics and Ecology 67: 29–36. https://doi.org/10.1016/j.bse.2016.05.020.
  • Lecaudey LA, Schletterer M, Kuzovlev VV, Hahn C, Weiss SJ. 2019. Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1785–1800. https://doi.org/10.1002/aqc.3163.
  • Leese F, Bouchez A, Abarenkov K, Altermatt F, Borja Á, Bruce K, Ekrem T, Čiampor F, Čiamporová-Zaťovičová Z, Costa FO, et al. 2018. Why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic biomonitoring 2.0: a perspective derived from the DNAqua-net cost action. Next Generation Biomonitoring: Part 1 58: 63–99. https://doi.org/10.1016/bs.aecr.2018.01.001.
  • Leray M, Knowlton N, Ho S-L, Nguyen BN, Machida RJ. 2019. GenBank is a reliable resource for 21st century biodiversity research. Proceedings of the National Academy of Sciences 116: 22651–22656. https://doi.org/10.1073/pnas.1911714116.
  • Li F, Zhang Y, Altermatt F, Zhang X, Cai Y, Yang Z. 2022. Gap analysis for DNA-based biomonitoring of aquatic ecosystems in China. Ecological Indicators 137: 108732. https://doi.org/10.1016/j.ecolind.2022.108732.
  • Mächler E, Little CJ, Wüthrich R, Alther R, Fronhofer EA, Gounand I, Harvey E, Hürlemann S, Walser JC, Altermatt F. 2019. Assessing different components of diversity across a river network using eDNA. Environmental DNA 1: 290–301. https://doi.org/10.1002/edn3.33.
  • Meiklejohn KA, Damaso N, Robertson JM. 2019. Assessment of BOLD and GenBank–Their accuracy and reliability for the identification of biological materials. PLoS One 14: e0217084. https://doi.org/10.1371/journal.pone.0217084.
  • Milan DT, Mendes IS, Damasceno JS, Teixeira DF, Sales NG, Carvalho DC. 2020. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Scientific Reports 10: 17966. https://doi.org/10.1038/s41598-020-74902-3.
  • Minett JF, Garcia De Leaniz C, Brickle P, Consuegra S. 2021. A new high-resolution melt curve eDNA assay to monitor the simultaneous presence of invasive brown trout (Salmo trutta) and endangered galaxiids. Environmental DNA 3: 561–572. https://doi.org/10.1002/edn3.151.
  • Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, et al. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2: 150088. https://doi.org/10.1098/rsos.150088.
  • Noble T, Robson H, Saunders R, Jerry D. 2015. The utility of eDNA as a tilapia surveillance tool. Report No. 1.W.1. Invasive Animal Cooperative Research Centre, Canberra, ACT, Australia.
  • Myers G. 1938. Fresh-water fishes and West Indian zoogeography. Annual Report of the Board of Regents of the Smithsonian Institution 3465: 339–364.
  • O’Brien GC, Ross M, Hanzen C, Dlamini V, Petersen R, Diedericks GJ, Burnett MJ. 2019. River connectivity and fish migration considerations in the management of multiple stressors in South Africa. Marine and Freshwater Research 70: 1254–1264. https://doi.org/10.1071/MF19183.
  • Polanco F A, Richards E, Flück B, Valentini A, Altermatt F, Brosse S, Walser JC, Eme D, Marques V, Manel S, et al. 2021. Comparing the performance of 12s mitochondrial primers for fish environmental DNA across ecosystems. Environmental DNA 3: 1113–1127. https://doi.org/10.1002/edn3.232.
  • Ratnasingham S, Hebert PDN. 2007. BOLD: the barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  • Rees HC, Gough KC, Middleditch DJ, Patmore JR, Maddison BC. 2015. Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. Journal of Applied Ecology 52: 827–831. https://doi.org/10.1111/1365-2664.12467.
  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, Maccormack TJ, Olden JD, Ormerod SJ, et al. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849–873. https://doi.org/10.1111/brv.12480.
  • Revenga C, Campbell I, Abell R, De Villiers P, Bryer M. 2005. Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 397–413. https://doi.org/10.1098/rstb.2004.1595.
  • Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E. 2011. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research 39: e145. https://doi.org/10.1093/nar/gkr732.
  • Riddell ES, Govender D, Botha J, Sithole H, Petersen RM, Shikwambana P. 2019. Pollution impacts on the aquatic ecosystems of the Kruger National Park, South Africa. Scientific African 6: e00195. https://doi.org/10.1016/j.sciaf.2019.e00195.
  • Rimet F, Aylagas E, Borja A, Bouchez A, Canino A, Chauvin C, Chonova T, Ciampor F Jr, Costa FO, Ferrari BJ et al. 2021. Metadata standards and practical guidelines for specimen and DNA curation when building barcode reference libraries for aquatic life. Metabarcoding and Metagenomics 5: e58056. https://doi.org/10.3897/mbmg.5.58056.
  • Sales NG, Wangensteen OS, Carvalho DC, Deiner K, Præbel K, Coscia I, McDevitt AD, Mariani S. 2021. Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding. Science of the Total Environment 754: 142096. https://doi.org/10.1016/j.scitotenv.2020.142096.
  • Shu L, Ludwig A, Peng Z. 2020. Standards for methods utilizing environmental DNA for detection of fish species. Genes 11: 296. https://doi.org/10.3390/genes11030296.
  • Shu L, Ludwig A, Peng Z. 2021. Environmental DNA metabarcoding primers for freshwater fish detection and quantification: in silico and in tanks. Ecology and Evolution 11: 8281–8294.
  • Skelton PH. 2001. A complete guide to the freshwater fishes of Southern Africa. Cape Town, South Africa: Struik.
  • Singh S, Groeneveld J, Huggett J, Naidoo D, Cedras R, Willows-Munro S. 2021. Metabarcoding of marine zooplankton in South Africa. African Journal of Marine Science 43: 147–159. https://doi.org/10.2989/1814232X.2021.1919759.
  • Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH. 2012. Environmental DNA. Molecular Ecology 21: 1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x.
  • Takahara T, Minamoto T, Doi H. 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8: e56584. https://doi.org/10.1371/journal.pone.0056584.
  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21: 2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x.
  • Thomsen PF, Willerslev E. 2015. Environmental DNA–an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18. https://doi.org/10.1016/j.biocon.2014.11.019.
  • Tobe SS, Kitchener A, Linacre A. 2009. Cytochrome b or cytochrome c oxidase subunit I for mammalian species identification — an answer to the debate. Forensic Science International: Genetics Supplement Series 2: 306–307. https://doi.org/10.1016/j.fsigss.2009.08.053.
  • Tsoupas A, Papavasileiou S, Minoudi S, Gkagkavouzis K, Petriki O, Bobori D, Sapounidis A, Koutrakis E, Leonardos I, Karaiskou N, Triantafyllidis A. 2022. DNA barcoding identification of Greek freshwater fishes. PLoS ONE 17: e0263118. https://doi.org/10.1371/journal.pone.0263118.
  • Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, Gaboriaud C. 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology 25: 929–942. https://doi.org/10.1111/mec.13428.
  • van der Walt KA, Mäkinen T, Swartz ER, Weyl OLF. 2017. DNA barcoding of South Africa’s ornamental freshwater fish–are the names reliable? African Journal of Aquatic Science 42:155–160. https://doi.org/10.2989/16085914.2017.1343178.
  • Vasselon V, Rimet F, Tapolczai K, Bouchez A. 2017. Assessing ecological status with diatoms DNA metabarcoding: scaling-up on a WFD monitoring network (Mayotte island, France). Ecological Indicators 82: 1–12. https://doi.org/10.1016/j.ecolind.2017.06.024.
  • Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, Geiger MF, Grabowski M, Rimet F, Rulik B. 2019. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. Science of the Total Environment 678: 499–524. https://doi.org/10.1016/j.scitotenv.2019.04.247.
  • Weyl OLF, Ellender BR, Wassermann RJ, Truter M, Dalu T, Zengeya TA, Smit NJ. 2020. Alien freshwater fauna in South Africa. In: van Wilgen B, Measey J, Richardson D, Wilson J, Zengeya T, Smit NJ (eds) Biological invasions in South Africa. Invading Nature-Springer Series in Invasion Ecology, Berlin. https://doi.org/10.1007/978-3-030-32394-3_6.
  • Xiong F, Shu L, Zeng H, Gan X, He S, Peng Z. 2022. Methodology for fish biodiversity monitoring with environmental DNA metabarcoding: the primers, databases and bioinformatic pipelines. Water Biology and Security 1: 100007. https://doi.org/10.1016/j.watbs.2022.100007.
  • Yamamoto S, Masuda R, Sato Y, Sado T, Araki H, Kondoh M, Minamoto T, Miya M. 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports 7: 40368. https://doi.org/10.1038/srep40368.
  • Zhang S, Zhao J, Yao M. 2020. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods in Ecology and Evolution 11: 1609–1625. https://doi.org/10.1111/2041-210X.13485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.