141
Views
0
CrossRef citations to date
0
Altmetric
Articles

Non-parametric analysis of nitrogen trends in the form of nitrate and nitrite in rivers and streams of the contiguous United States for 1990–2019

&
Pages 129-141 | Received 09 Nov 2021, Accepted 14 Aug 2022, Published online: 14 Sep 2022

References

  • Akbariyeh, S., etal (2018). Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux. Journal of Contaminant Hydrology, 211(February), 15–25. https://doi.org/10.1016/j.jconhyd.2018.02.005
  • Akbariyeh, S., etal (2019). Prediction of nitrate accumulation and leaching beneath groundwater irrigated corn fields in the upper platte basin under a future climate scenario. Science of The Total Environment, 514–526. https://doi.org/10.1016/j.scitotenv.2019.05.417.
  • Ator, S. W., García, A. M., Schwarz, G. E., Blomquist, J. D., & Sekellick, A. J. (2019). Toward explaining nitrogen and phosphorus trends in chesapeake bay tributaries, 1992–2012. JAWRA Journal of the American Water Resources Association, 55(5), 1149–1168. https://doi.org/10.1111/1752-1688.12756
  • Baeumler, N. W., & Gupta, S. C. (2020). Precipitation as the primary driver of variability in river nitrogen loads in the midwest United States. JAWRA Journal of the American Water Resources Association, 56(1), 113–133. https://doi.org/10.1111/1752-1688.12809
  • Bellmore, R. A., etal (2018). Nitrogen inputs drive nitrogen concentrations in U.S. Streams and rivers during summer low flow conditions. Science of the Total Environment, 639, 1349–1359. https://doi.org/10.1016/j.scitotenv.2018.05.008
  • Brooks, P. D., & Lemon, M. M. (2007). Spatial variability in dissolved organic matter and inorganic nitrogen concentrations in a semiarid stream, San pedro river, arizona. Journal of Geophysical Research: Biogeosciences, 112(G3). https://doi.org/10.1029/2006JG000262.
  • Clune, J. W., Crawford, J. K., & Boyer, E. W. (2020). Nitrogen and phosphorus concentration thresholds toward establishing water quality criteria for pennsylvania, USA. Water, 12(12), 3550. https://doi.org/10.3390/w12123550
  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.
  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., Likens, G. E. & Others (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917), 1014–1015. https://doi.org/10.1126/science.1167755
  • Craig, L. S., Palmer, M. A., Richardson, D. C., Filoso, S., Bernhardt, E. S., Bledsoe, B. P., Doyle, M. W., Groffman, P. M., Hassett, B. A., Kaushal, S. S., & Others (2008). Stream restoration strategies for reducing river nitrogen loads. Frontiers in Ecology and the Environment, 6(10), 529–538. https://doi.org/10.1890/070080
  • Cressie, N. A. C., & Whitford, H. J. (1986). How to Use the Two samplet-test. Biometrical Journal, 28(2), 131–148. https://doi.org/10.1002/bimj.4710280202
  • Gelda, R. K., & Auer, M. T. (1996). Development and testing of a dissolved oxygen model for a hypereutrophic lake. Lake and Reservoir Management, 12(1), 165–179. https://doi.org/10.1080/07438149609354006
  • Harris, T., & Hardin, J. W. (2013). Exact Wilcoxon signed-rank and Wilcoxon Mann–Whitney ranksum tests. The Stata Journal: Promoting Communications on Statistics and Stata, 13(2), 337–343. https://doi.org/10.1177/1536867X1301300208
  • Holland, D. M., Principe, P. P., & Sickles IIJ. E. (1998). Trends in atmospheric sulfur and nitrogen species in the eastern United States for 1989–1995. Atmospheric Environment, 33(1), 37–49. https://doi.org/10.1016/S1352-2310(98)00123-X
  • Howarth, R. W., et al. (2006). The influence of climate on average nitrogen export from large watersheds in the northeastern United States. In: Luiz A. Martinelli and Robert W. Howarth, eds. Nitrogen cycling in the americas: Natural and anthropogenic influences and controls (pp. 163–186). Springer.
  • Huizenga, A., Bailey, R. T., & Gates, T. K. (2017). Stream-aquifer and in-stream processes affecting nitrogen along a major river and contributing tributary. Journal of Contaminant Hydrology, 199, 24–35. https://doi.org/10.1016/j.jconhyd.2017.03.003
  • Jones, C. S., Nielsen, J. K., Schilling, K. E., & Weber, L. J. (2018). Iowa stream nitrate and the Gulf of Mexico. PloS one, 13(4), e0195930. https://doi.org/10.1371/journal.pone.0195930
  • Khangaonkar, T., Nugraha, A., Xu, W., Long, W., Bianucci, L., Ahmed, A., Mohamedali, T., & Pelletier, G. (2018). Analysis of hypoxia and sensitivity to nutrient pollution in salish Sea. Journal of Geophysical Research: Oceans, 123(7), 4735–4761. https://doi.org/10.1029/2017JC013650
  • Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.03.013
  • Lilliefors, H. W. (1967). On the kolmogorov-smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org/10.1080/01621459.1967.10482916
  • Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data, 9(1), 181–192. https://doi.org/10.5194/essd-9-181-2017
  • Mapstone, B. D. (1995). Scalable decision rules for environmental impact studies: Effect size, type I, and type II errors. Ecological Applications, 5(2), 401–410. https://doi.org/10.2307/1942031
  • Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253), 68–78. https://doi.org/10.1080/01621459.1951.10500769
  • McMahon, P. B., & Dennehy, K. F. (1999). N2O emissions from a nitrogen-enriched river. Environmental Science & Technology, 33(1), 21–25. https://doi.org/10.1021/es980645n
  • Mohebbi, A., Akbariyeh, S., Li, Y., & Bartelt-Hunt, S. (2017). Modeling fate and transport of nitrate in groundwater flow: Case study Gila bend basin, arizona. In: Association of Environmental Engineering and Science Professors.
  • Montgomery, D. C., & Runger, G. C. (2018). Applied statistics and probability for engineers. Wiley Hoboken.
  • Newcomer, M. E., Bouskill, N. J., Wainwright, H., Maavara, T., Arora, B., Siirila-Woodburn, E. R., Dwivedi, D., Williams, K. H., Steefel, C., & Hubbard, S. S. (2021). Hysteresis patterns of watershed nitrogen retention and loss over the past 50 years in United States hydrological basins. Global Biogeochemical Cycles, 35(4), e2020GB006777. https://doi.org/10.1029/2020GB006777
  • Oenema, O., & Roest, C. W. J. (1998). Nitrogen and phosphorus losses from agriculture into surface waters; the effects of policies and measures in the Netherlands. Water Science and Technology, 37(3), 19–30. https://doi.org/10.2166/wst.1998.0167
  • Oenema, O., van Liere, L., & Schoumans, O. (2005). Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands. Journal of Hydrology, 304(1–4), 289–301. https://doi.org/10.1016/j.jhydrol.2004.07.044
  • Olsen, A. R., & Peck, D. V. (2008). Survey design and extent estimates for the wadeable streams assessment. Journal of the North American Benthological Society, 27(4), 822–836. https://doi.org/10.1899/08-050.1
  • Omernik, J. M. (1977). Nonpoint source–stream nutrient level relationships: A nationwide study [phosphorus and nitrogen levels, USA]. Ecological Research Series (USA). no. 600/3-77-105, 4.
  • Omernik, J., Paulsen, S., Griffith, G., & Weber, M. (2016). Regional patterns of total nitrogen concentrations in the national rivers and streams assessment. Journal of Soil and Water Conservation, 71(3), 167–181. https://doi.org/10.2489/jswc.71.3.167
  • Polyakov, M., White, B., & Zhang, F., 2017. Cost-effective strategies to reduce nitrogen and phosphorus emissions in an urban river catchment. Melbourne, Australia: Cooperative Research Centre for Water Sensitive Cities.
  • Renwick, W. H., Vanni, M. J., Fisher, T. J., & Morris, E. L. (2018). Stream nitrogen, phosphorus, and sediment concentrations show contrasting long-term trends associated with agricultural change. Journal of Environmental Quality, 47(6), 1513–1521. https://doi.org/10.2134/jeq2018.04.0162
  • Richards, R. P., & Baker, D. B. (2002). Trends in water quality in LEASEQ rivers and streams (northwestern ohio), 1975–1995. Journal of Environmental Quality, 31(1), 90–96. https://doi.org/10.2134/jeq2002.9000
  • Schaefer, S. C., & Alber, M. (2007). Temporal and spatial trends in nitrogen and phosphorus inputs to the watershed of the altamaha river, Georgia, USA. Biogeochemistry, 86(3), 231–249. https://doi.org/10.1007/s10533-007-9155-6
  • Schilling, K. E., Jones, C. S., Wolter, C. F., Liang, X., Zhang, Y.-K., Seeman, A., Isenhart, T., Schnoebelen, D., & Skopec, M. (2017). Variability of nitrate-nitrogen load estimation results will make quantifying load reduction strategies difficult in iowa. Journal of Soil and Water Conservation, 72(4), 317–325. https://doi.org/10.2489/jswc.72.4.317
  • Schilling, K. E., & Lutz, D. S. (2004). Relation of nitrate concentrations to baseflow in the raccoon river, iowa. Journal of the American Water Resources Association, 40(4), 889–900. https://doi.org/10.1111/j.1752-1688.2004.tb01053.x
  • Shieh, G., Jan, S., & Randles, R. H. (2006). On power and sample size determinations for the Wilcoxon–Mann–Whitney test. Journal of Nonparametric Statistics, 18(1), 33–43. https://doi.org/10.1080/10485250500473099
  • Siegel, S. (1957). Nonparametric statistics. The American Statistician, 11(3), 13–19. https://doi.org/10.1080/00031305.1957.10501091.
  • Smith, R. A., Alexander, R. B., & Wolman, M. G. (1987). Water-quality trends in the nation’s rivers. Science, 235(4796), 1607–1615. https://doi.org/10.1126/science.235.4796.1607
  • Sprague, L. A., & Lorenz, D. L. (2009). Regional nutrient trends in streams and rivers of the United States, 1993−2003. Environmental Science & Technology, 43(10), 3430–3435. https://doi.org/10.1021/es803664x
  • Watson, S. B., Miller, C., Arhonditsis, G., Boyer, G. L., Carmichael, W., Charlton, M. N., Confesor, R., Depew, D. C., Höök, T. O., Ludsin, S. A., & Others (2016). The re-eutrophication of lake erie: Harmful algal blooms and hypoxia. Harmful Algae, 56, 44–66. https://doi.org/10.1016/j.hal.2016.04.010
  • Wilcoxon, F. (1992). Individual comparisons by ranking methods. In: Breakthroughs in statistics (pp. 196–202). Springer.
  • Withers, P. J. A., Jarvie, H. P., & Stoate, C. (2011). Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters. Environment International, 37(3), 644–653. https://doi.org/10.1016/j.envint.2011.01.002
  • Yu, C., Huang, X., Chen, H., Godfray, H. C. J., Wright, J. S., Hall, J. W., Gong, P., Ni, S., Qiao, S., Huang, G., & Others. (2019). Managing nitrogen to restore water quality in China. Nature, 567(7749), 516–520. https://doi.org/10.1038/s41586-019-1001-1
  • Yu, Y.-S., Zou, S., & Whittemore, D. (1993). Non-parametric trend analysis of water quality data of rivers in kansas. Journal of Hydrology, 150(1), 61–80. doi:10.1016/0022-1694(93)90156-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.