280
Views
2
CrossRef citations to date
0
Altmetric
Articles

Soil erodibility mapping using watershed prioritization and morphometric parameters in conjunction with WSA, SPR and AHP-TOPSIS models in Mandakini basin, India

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 143-165 | Received 17 Dec 2021, Accepted 07 Aug 2022, Published online: 25 Oct 2022

References

  • Ahmed, I., Das (Pan), N., Debnath, J., & Bhowmik, M. (2017). An assessment to prioritise the critical erosion-prone sub-watersheds for soil conservation in the Gumti basin of Tripura, North-East India. Environmental Monitoring and Assessment, 189(11), 600. https://doi.org/10.1007/s10661-017-6315-6
  • Altaf, F., Meraj, G., & Romshoo, S. A. (2013). Morphometric analysis to infer hydrological behaviour of Lidder Watershed, Western Himalaya, India. Geography Journal, 2013, 1–14. https://doi.org/10.1155/2013/178021
  • Ameri, A. A., Pourghasemi, H. R., & Cerda, A. (2018). Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Science of the Total Environment, 613-614, 1385–1400. https://doi.org/10.1016/j.scitotenv.2017.09.210
  • Athawale, V. M. and Chakraborty, S., 2011. A comparative study on the ranking performance of some multi-criteria decision-making methods for industrial robot selection. International journal of industrial engineering computations, 2 (4), 831–850. https://doi.org/10.5267/j.ijiec.2011.05.002.
  • Ayele, G. T., Teshale, E. Z., Yu, B., Rutherfurd, I. D., & Jeong, J. (2017). Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water, 9(10), 782. https://doi.org/10.3390/w9100782
  • Batar, A. K., Watanabe, T., & Kumar, A. (2017). Assessment of land-use/land-cover change and forest fragmentation in the Garhwal Himalayan Region of India. Environments, 4(2), 1–16. https://doi.org/10.3390/environments4020034
  • Bezak, N., Mikos, M., Borrelli, P., Mikoš, M., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., Biddoccu, M., Cerdà, A., Chalise, D., Chen, S., Chen, W., De Girolamo, A. M., Gessesse, G. D., Deumlich, D., Diodato, N., Efthimiou, N., … Panagos, P. (2021). Soil erosion modelling: A bibliometric analysis. Environmental Research, 197, 111087. https://doi.org/10.1016/j.envres.2021.111087
  • Biswas, S. S., Pal, R., Pramanik, M. K., & Mondal, B. (2015). Assessment of anthropogenic factors and foods using remote sensing and GIS on lower regimes of Kangshabati-Rupnarayan River Basin, India. International Journal of Remote Sensing GIS, 4(2), 77–86.
  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., ... & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), 1–13. https://doi.org/10.1038/s41467-017-02142-7
  • Chaudhary, S., Kumar, A., Pramanik, M., & Negi, M. S. (2021). Land evaluation and sustainable development of ecotourism in the Garhwal Himalayan region using geospatial technology and analytical hierarchy process. Environment, Development and Sustainability, 24(2), 2225–2266. https://doi.org/10.1007/s10668-021-01528-4
  • Chauhan, P., Chauniyal, D. D., Singh, N., & Tiwari, R. K. (2016). Quantitative geo-morphometric and land cover-based micro-watershed prioritization in the Tons river basin of the lesser Himalaya. Environmental Earth Sciences, 75(6), 498. https://doi.org/10.1007/s12665-016-5342-x
  • Chorley, R. J., & Morley, L. S. D. (1959). A simplified approximation for the hypsometric integral. The Journal of Geology, 67(5), 566–571. https://doi.org/10.1086/626608
  • Choubey, V. M., Bartarya, S. K., & Ramola, R. C. (2000). Radon in Himalayan springs : a geohydrological control. Environmental Geology, 39(April), 523–530. https://doi.org/10.1007/s002540050463
  • Choudhari, P. P., Nigam, G. K., Singh, S. K., & Thakur, S. (2018). Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geology, Ecology, and Landscapes, 2(4), 256–267. https://doi.org/10.1080/24749508.2018.1452482
  • Chowdary, V. M., Chakraborthy, D., Jeyaram, A., Murthy, Y. K., Sharma, J. R., & Dadhwal, V. K. (2013). Multi-criteria decision-making approach for watershed prioritization using analytic hierarchy process technique and GIS. Water Resources Management, 27(10), 3555–3571. https://doi.org/10.1007/s11269-013-0364-6
  • Das, D. (2014). Identification of erosion prone areas by morphometric analysis using GIS. Journal of The Institution of Engineers (India): Series A, 95(1), 61–74. https://doi.org/10.1007/s40030-014-0069-8
  • Fan, M., & Shibata, H. (2014). Spatial and temporal analysis of hydrological provision ecosystem services for watershed conservation planning of water resources. Water Resources Management, 28(11), 3619–3636. https://doi.org/10.1007/s11269-014-0691-2
  • Farhan, Y., Anbar, A., Al-Shaikh, N., Almohammad, H., Alshawamreh, S., & Barghouthi, M. (2018). Prioritization of sub-watersheds in a large semi-arid drainage basin (Southern Jordan) using morphometric analysis. Agricultural Sciences, 9(04), 437–468. https://doi.org/10.4236/as.2018.94031
  • Gaikwad, R., & Bhagat, V. (2017). Multi-Criteria watershed prioritization of Kas Basin in Maharashtra India: AHP and influence approaches. Hydrospatial Analysis, 1(1), 41–61. https://doi.org/10.21523/gcj3.17010105
  • Gajbhiye, S., Mishra, S. K., & Pandey, A. (2015). Simplified sediment yield index model incorporating parameter curve number. Arabian Journal of Geosciences, 8(4), 1993–2004. https://doi.org/10.1007/s12517-014-1319-9
  • Gravelius, H. (1914). Grundriss der gesamten Gewässerkunde. Flusskunde, 1, Berlin and Leipzig, 8–179.
  • Hembram, T. K., & Saha, S. (2020). Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India. Environment, Development and Sustainability, 22(2), 1241–1268. https://doi.org/10.1007/s10668-018-0247-3
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  • Horton, R. E. (1932). Drainage basin characteristics. Transactions of the American Geophysical Union, 13, 350–361.
  • Hwang, C. L. and Yoon, K., 1981. Methods for multiple attribute decision making. In: Multiple attribute decision making. Berlin, Heidelberg: Springer, 58–191.
  • Jadhav, S. I. (2014). Linear and Aerial aspect of Basin morphometry of Kundka Sub-basin of Sindphana Basin (Beed). June 16–20.
  • Jahan, A., Ismail, M. Y., Shuib, S., Norfazidah, D., & Edwards, K. L. (2011). An aggregation technique for optimal decision-making in materials selection. Materials and Design, 32 (10), 4918–4924.
  • Jain, S. K., Singh, P., Saraf, A. K., & Seth, S. M. (2003). Estimation of sediment yield for a rain, snow and glacier-fed river in the western Himalayan region. Water Resources Management, 17(5), 377–393. https://doi.org/10.1023/A:1025804419958
  • Jasrotia, A. S., & Singh, R. (2006). Modeling runoff and soil erosion in a catchment area, using the GIS, in the Himalayan region, India. Environmental Geology, 51(1), 29–37. https://doi.org/10.1007/s00254-006-0301-6
  • Jenks, G. F., & Caspall, F. C. (1971). Error on choroplethic maps: Definition, measurement, reduction. Annals of the Association of American Geographers, 61(2), 217–244. https://doi.org/10.1111/j.1467-8306.1971.tb00779.x
  • Jose, C. S., & Das, D. C. (1982). Geomorphic prediction models for sediment production rate and intensive priorities of watersheds in Mayurakshi catchment. In Proc. of International Symp. On Hydrological Aspects of Mountainous Watersheds, School of Hydrology, UOR, Roorkee (Vol. 1, pp. 15–23).
  • Kadam, A. K., Jaweed, T. H., Kale, S. S., Umrikar, B. N., & Sankhua, R. N. (2019a). Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: A remote sensing and GIS approach. Geomatics, Natural Hazards and Risk, 10(1), 986–1006. https://doi.org/10.1080/19475705.2018.1555189
  • Kadam, A., Karnewar, A. S., Umrikar, B., & Sankhua, R. N. (2019b). Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method. Environment, Development and Sustainability, 21(4), 1809–1833. https://doi.org/10.1007/s10668-018-0104-4
  • Kannan, G., Pokharel, S. and Kumar, P. S., 2009. A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resources, conservation and recycling, 54 (1), 28–36.
  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., & Van Der Putten, W. H. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2(2), 111–128. https://doi.org/10.5194/soil-2-111-2016
  • Khare, D., Mondal, A., Kundu, S., & Mishra, P. K. (2017). Climate change impact on soil erosion in the Mandakini River Basin, North India. Applied Water Science, 7(5), 2373–2383. https://doi.org/10.1007/s13201-016-0419-y
  • Kim, Y., & Chung, E. S. (2014). An index-based robust decision-making framework for watershed management in a changing climate. Science of the Total Environment, 473-474, 88–102. https://doi.org/10.1016/j.scitotenv.2013.12.002
  • Kumar, A., Chaudhary, S., & Negi, M. S. (2019). A study of spatio-temporal land use/ land cover change dynamics in Rudraprayag District (Garhwal Himalaya) using remote sensing and GIS. Journal of Global Resources, 5(July), 61–69
  • Kumar, A., & Negi, M. S. (2016). Physiographic study of Mandakini valley (Rudraprayag District) Garhwal Himalaya by morphometric analysis and Geospatial Techniques. International Journal of Geomatics and Geosciences, 7(3), 285–298. http://www.ipublishing.co.in/jggsarticles/volseven/EIJGGS7011.pdf.
  • Kumar, A., Pramanik, M., Chaudhary, S., & Negi, M. S. (2020). Land evaluation for sustainable development of Himalayan agriculture using RS-GIS in conjunction with analytic hierarchy process and frequency ratio. Journal of the Saudi Society of Agricultural Sciences, 20(1), 1–17. https://doi.org/10.1016/j.jssas.2020.10.001
  • Kumar, N., & Singh, S. K. (2021). Soil erosion assessment using earth observation data in a trans-boundary river basin. Natural Hazards, 107(1), 1–34. https://doi.org/10.1007/s11069-021-04571-6
  • Kumar, A., Singh, S., Pramanik, M., Chaudhary, S., & Maurya, A. K. (2021). Watershed prioritisation for soil erosion mapping in the Lesser Himalayan Indian basin using PCA and WSA methods in conjunction with morphometric parameters and GIS-based approach. Environment, Development and Sustainability, 24(3), 3723–3761. https://doi.org/10.1007/s10668-021-01586-8
  • Lal, R., Horn, R., & Kosaki, T. (2018). Soil and sustainable development goals.
  • Langbein, W. B. (1947). Topographic characteristics of drainage basins. In Water Supply Paper. https://doi.org/10.3133/wsp968C.
  • Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology WH Freeman and Company San Francisco. California.
  • MacCrimmon, K. R. (1968). Decision-making among Multiple-Attribute Alternatives: A Survey and Consolidated Approach. Advanced Research Projects Agency.
  • Mahapatra, S. K., Reddy, G. P. O., Nagdev, R., Yadav, R. P., Singh, S. K., & Sharda, V. N. (2018). Assessment of soil erosion in the fragile Himalayan ecosystem of Uttarakhand, India using USLE and GIS for sustainable productivity. Current Science, 115(1), 108. https://doi.org/10.18520/cs/v115/i1/108-121
  • Malik, A., Kumar, A., & Kandpal, H. (2019). Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arabian Journal of Geosciences, 12(4), 118. https://doi.org/10.1007/s12517-019-4310-7
  • Mandal, B., & Mandal, S. (2018). Analytical hierarchy process (AHP) based landslide susceptibility mapping of lish river basin of eastern darjeeling himalaya, India. Advances in Space Research, 62(11), 3114–3132. https://doi.org/10.1016/j.asr.2018.08.008
  • Mandal, D., & Sharda, V. N. (2011). Assessment of permissible soil loss in India employing a quantitative biophysical model. Current Science, 383–390.
  • Mandal, D., & Sharda, V. N. (2013). Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degradation & Development, 24(5), 430–437.
  • Markose, V. J., & Jayappa, K. S. (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment, 188(4), 225. https://doi.org/10.1007/s10661-016-5218-2
  • Masselink, R. J. H., Heckmann, T., Temme, A. J. A. M., Anders, N. S., Gooren, H. P. A., & Keesstra, S. D. (2017). A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes, 31(1), 207–220. https://doi.org/10.1002/hyp.10993.
  • Memariani, A., Amini, A., & Alinezhad, A. (2009). Sensitivity analysis of simple additive weighting method (SAW): the results of change in the weight of one attribute on the final ranking of alternatives. Journal of Industrial Engineering, 4, 13–18.
  • Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA-based approach. Applied Water Science, 7(3), 1505–1519. https://doi.org/10.1007/s13201-015-0332-9
  • Miller, V. C. (1953). Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. In Technical report (Columbia University. Department of Geology); no. 3. Dept. of Geology, Columbia University.
  • Mondal, B., Chakraborti, S., Das, D. N., Joshi, P. K., Maity, S., Pramanik, M. K., & Chatterjee, S. (2020). Comparison of spatial modelling approaches to simulate urban growth: A case study on Udaipur city, India. Geocarto International, 35(4), 411–433. https://doi.org/10.1080/10106049.2018.1520922
  • Mondal, B., Dolui, G., Pramanik, M. K., Maity, S., & Biswas, S. S. (2017). Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecological Indicators, 83, 62–73. https://doi.org/10.1016/j.ecolind.2017.07.037
  • Montgomery, D. R., & Dietrich, W. E. (1992). Channel initiation and the problem of landscape scale. Science, 255(5046), 826–830. https://doi.org/10.1126/science.255.5046.826
  • Mosbahi, M., Benabdallah, S., & Boussema, M. R. (2013). Assessment of soil erosion risk using SWAT model. Arabian Journal of Geosciences, 6(10), 4011–4019. https://doi.org/10.1007/s12517-012-0658-7
  • Narayana, D. V., & Babu, R. (1983). Estimation of soil erosion in India. Journal of Irrigation and Drainage Engineering, 109(4), 419–434. https://doi.org/10.1061/(ASCE)0733-9437(1983)109:4(419)
  • Nunchhani, V., Golom, T., Nirin, L., Bandyopadhyay, A., & Bhadra, A. (2020). Prioritization of Mago Basin based on erodibility through morphometric analysis using GIS technique: A PCA-based approach. Journal of Soil and Water Conservation, 19(1), 10–16. https://doi.org/10.5958/2455-7145.2020.00002.8
  • Pal, R., Biswas, S. S., Pramanik, M. K., & Mondal, B. (2016a). Bank vulnerability and avulsion modelling of the Bhagirathi-Hugli river between Ajay and Jalangi confluences in lower Ganga Plain, India. Modeling Earth Systems and Environment, 2(2), 1–10. https://doi.org/10.1007/s40808-016-0125-7.
  • Pal, R., Biswas, S. S., Mondal, B., & Pramanik, M. (2015). Effects of rainfall variability and barrage construction on discharge and channel modification in the Lower Damodar River. International Journal of Energy and Engineering Research, 4(2), 35–43.
  • Pal, R., Biswas, S. S., Mondal, B., & Pramanik, M. K. (2016b). Landslides and foods in the Tista basin (Darjeeling and Jalpaiguri Districts): Historical evidence, causes and consequences. Journal of Geophysics Union, 20(2), 209–215.
  • Patton, P. C., & Baker, V. R., (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12 (5), 941–952.
  • Paul, I. I., & Bayode, E. N. (2012). Watershed characteristics and their implication for hydrologic response in the upper Sokoto basin, Nigeria. Journal of Geography & Geology, 4(2), 147–155. https://doi.org/10.5539/jgg.v4n2p147.
  • Pomerol, J. C., & Barba–Romero, S. (2000). Multicriterion decision in practice. In: Multicriterion decision in management. Boston, MA: Springer, 299–326.
  • Pramanik, K. (2015). Changes and status of Mangrove habitat in Ganges Delta: Case study in Indian part of Sundarbans. Forest Research, 4(3), 1–7. https://doi.org/10.4172/2168-9776.1000153.
  • Pramanik, M. (2016). Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Systems and Environment, 2(2), 56. https://doi.org/10.1007/s40808-016-0116-8
  • Pramanik, M. K. (2017). Impacts of predicted sea-level rise on land use/land cover categories of the adjacent coastal areas of Mumbai megacity, India. Environment, Development and Sustainability, 19(4), 1343–1366. https://doi.org/10.1007/s10668-016-9804-9
  • Pramanik, M., Dash, P., & Behal, D. (2021b). Improving outcomes for socio-economic variables with coastal vulnerability index under significant sea-level rise: An approach from Mumbai coasts. Environment, Development and Sustainability, 23(9), 13819–13853. https://doi.org/10.1007/s10668-021-01239-w
  • Pramanik, M., Paudel, U., Mondal, B., Chakraborti, S., & Deb, P. (2018). Predicting climate change impacts on the distribution of the threatened Garcinia Indica in the Western Ghats, India. Climate Risk Management, 19, 94–105. https://doi.org/10.1016/j.crm.2017.11.002
  • Pramanik, M., Singh, P., & Dhiman, R. (2020a). Identification of Bio-climatic determinants and potential risk areas for Kyasanur Forest disease in southern India using MaxEnt modelling approach. BMC Infectious Disease, https://doi.org/10.21203/rs.2.22417/v1
  • Pramanik, M., Szabo, S., Pal, I., Udmale, P., Connor, J., Sanyal, M., Roy, S., & Sebesvari, Z. (2021a). Twin disasters: Tracking COVID-19 and Cyclone Amphan’s impacts on SDGs in the Indian Sundarbans. Environment-Science, Science Policy for Sustainable Development, 63(4), 20–30. https://doi.org/10.1080/00139157.2021.1924575
  • Prasad, R. N., & Pani, P. (2017). Geo-hydrological analysis and subwatershed prioritization for flash flood risk using weighted sum model and Snyder’s synthetic unit hydrograph. Modeling Earth Systems and Environment, 3(4), 1491–1502. https://doi.org/10.1007/s40808-017-0354-4
  • Rahaman, S. A., Ajeez, S. A., Aruchamy, S., & Jegankumar, R. (2015). Prioritization of sub watershed based on morphometric characteristics using Fuzzy analytical hierarchy process and geographical information system – A study of Kallar Watershed, Tamil Nadu. Aquatic Procedia, 4, 1322–1330. https://doi.org/10.1016/j.aqpro.2015.02.172
  • Rautela, P., & Sajwan, K. S. (2014). Geological Investigations in Rudraprayag District with Special Reference to Mass Instability: Disaster Mitigation and Management Centre Publication. Department of Disaster Management. Government of Uttarakhand.
  • Rawat, J. S., & Rawat, M. S. (1994). Accelerated erosion and denudation in the Nana Kosi watershed, Central Himalaya, India. Part I: Sediment load. Mountain Research and Development, 14(1), 25–38. https://doi.org/10.2307/3673736
  • Rawat, M. S., Uniyal, D. P., Dobhal, R., Joshi, V., Rawat, B. S., Bartwal, A., Singh, D., & Aswal, A. (2015). Study of landslide hazard zonation in Mandakini Valley, Rudraprayag district, Uttarakhand using remote sensing and GIS. Current Science, 109(1).
  • Reid, L. M., & Dunne, T. (1984). Sediment production from forest road surfaces. Water Resources Research, 20(11), 1753–1761. https://doi.org/10.1029/WR020i011p01753
  • Saaty, T. L., (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15 (3), 234–281.
  • Saaty, T. L., (1980). Decision making with the analytic hierarchy process. New York: McGraw Hill.
  • Saha, S., Saha, A., Hembram, T. K., Pradhan, B., & Alamri, A. M. (2020). Evaluating the performance of individual and novel ensemble of machine learning and statistical models for landslide susceptibility assessment at Rudraprayag District of Garhwal Himalaya. Applied Sciences, 10(11), 1–31. https://doi.org/10.3390/app10113772.
  • Sati, S. P., Sundriyal, Y. P., & Rawat, G. S. (2007). Geomorphic indicators of neotectonic activity around Srinagar (Alaknanda basin), Uttarakhand. Current Science, 824–829.
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
  • Sharma, S. K., Pathak, R., & Suraiya, S. (2012). Prioritization of sub-watersheds based on morphometric analysis using remote sensing and GIS technique. JNKVV Research Journal, 46(3), 407–413.
  • Sharma, R., Sahai, B., & Karale, R. L. (1986). Identification of erosion-prone areas in a part of the Ukai catchment. In Asian Conference on Remote Sensing, 6th, Hyderabad, India, 121–126.
  • Singh, V. P., & Singh, V. P. (1992). Elementary hydrology. Prentice-Hall.
  • Singh, S., & Singh, M. C., (1997). Morphometric analysis of Kanhar river basin. National Geographical Journal of India, 43 (1), 31–43.
  • Singh, O., & Singh, J. (2018). Soil erosion susceptibility assessment of the Lower Himachal Himalayan Watershed. Journal of the Geological Society of India, 92(2), 157–165. https://doi.org/10.1007/s12594-018-0975-x
  • Singh, S., & Upadhyay, D. P. (1982). Topological and geometric study of drainage network. SE Chhota Nagpur Region, India. Perspectives in Geomorphology, 2, 199–233.
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668. https://doi.org/10.2475/ajs.248.9.655
  • Strahler, A. N. (1950). Equilibrium theory of erosional slopes approached by frequency distribution analysis. Part I. American Journal of Science, 248, 673–696.
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
  • Strahler, A. N., (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38 (6), 913–920.
  • Strahler, A. N., (1964). Part II. Quantitative geomorphology of drainage basins and channel networks. In: Chow V. T., ed. Handbook of applied hydrology (pp. 4–39). New York: McGraw-Hill.
  • Sujata, B., Sudhakar, S., & Desai, V. R. (2002). Remote sensing and geographic information system based approach for watershed conservation. Journal of Surveying Engineering, 128(3), 108–124. https://doi.org/10.1061/(ASCE)0733-9453(2002)128:3(108)
  • Szmidt, E., & Kacprzyk, J. (2011). The Spearman and Kendall rank correlation coefficients between intuitionistic fuzzy sets. In: Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology. Atlantis Press, 521–528. https://doi.org/10.2991/eusflat.2011.85.
  • Telore, N. V. (2020). Quantitative morphometric analysis of the Yerla River Basin, Deccan Trap Region, India. In Geoecology of landscape dynamics (pp. 115–132). Springer.
  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893–906. https://doi.org/10.1016/j.gsf.2017.05.011
  • Triantaphyllou, E., & Mann, S. H. (1989). An examination of the effectiveness of multi-dimensional decision-making methods: A decision-making paradox. Decision Support Systems, 5(3), 303–312. https://doi.org/10.1016/0167-9236(89)90037-7
  • Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: Methods and applications. CRC Press.
  • Uddin, K., Murthy, M. S. R., Wahid, S. M., & Matin, M. A. (2016). Estimation of soil erosion dynamics in the Koshi basin using GIS and remote sensing to assess priority areas for conservation. PloS One, 11(3), e0150494. https://doi.org/10.1371/journal.pone.0150494
  • Udmale, P., Pal, I., Szabo, S., Pramanik, M., & Large, A. (2020). Global food security in the context of COVID-19: A scenario-based exploratory analysis. Progress in Disaster Science, 7, 100120. https://doi.org/10.1016/j.pdisas.2020.100120
  • UNSDG. (2015). Sustainable development goals 6. 4. Retrieved 15 May, 2019, from https://sustainabledevelopment.un.org/sdg6.
  • Valdiya, K. S. (1980). Geology of the Kumaun Lesser Himalaya: Dehra Dun, India. Wadia Institute of Himalayan Geology.
  • Waikar, M., & Nilawar, A. (2014). Morphometric analysis of a drainage basin using geographical information system: A case study. International Journal of Multidisciplinary and Current Research, 2(1), 179–184.
  • Yadav, S. K., Dubey, A., Szilard, S., & Singh, S. K. (2018). Prioritisation of sub-watersheds based on earth observation data of agricultural dominated northern river basin of India. Geocarto International, 33(4), 339–356. https://doi.org/10.1080/10106049.2016.1265592
  • Young, A. (1972). Slopes: Edinburgh. Oliver and Boyd, 288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.