92
Views
0
CrossRef citations to date
0
Altmetric
Articles

Development of operation policy for dry season reservoirs in tropical partially gauged river basins

ORCID Icon, &
Pages 187-201 | Received 19 Mar 2020, Accepted 15 Aug 2022, Published online: 27 Sep 2022

References

  • Ahmadianfar, I., & Zamani, R. (2020). Assessment of the hedging policy on reservoir operation for future drought conditions under climate change. Climatic Change, 159(2), 253–268. https://doi.org/10.1007/s10584-020-02672-y
  • Alizadeh, Z., Shourian, M., & Yaseen, Z. M. (2020). Simulating monthly streamflow using a hybrid feature selection approach integrated with an intelligence model. Hydrological Sciences Journal, 65(8), 1374–1384. https://doi.org/10.1080/02626667.2020.1755436
  • Amirkani, M., Haddad, O. B., Ashofteh, P. S., & Loáiciga, H. A. (2015). Determination of the optimal level of water releases from a reservoir to control water quality. Journal of Hazardous, Toxic, and Radioactive Waste, 20(2), 04015017. https://doi.org/10.1061/(ASCE)HZ.21535515.0000295
  • Baş, D., & Boyaci, İH. (2007). Modelling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024
  • Bayazit, M., & Unal, N. E. (1990). Effects of hedging on reservoir performance. Water Resources Research, 26(4), 713–719. https://doi.org/10.1029/WR026i004p00713
  • Besaw, L. E., Rizzo, D. M., Bierman, P. R., & Hackett, W. R. (2010). Advances in ungauged streamflow prediction using artificial neural networks. Journal of Hydrology, 386(1), 27–37. https://doi.org/10.1016/j.jhydrol.2010.02.037
  • Bhatia, N., Srivastav, R., & Srinivasan, K. (2018). Season-Dependent hedging policies for reservoir operation—A comparison study. Water, 10(10), 1311. https://doi.org/10.3390/w10101311
  • Blöschl, G., Sivapalan, M., Savenije, H., Wagener, T., & Viglione, A. (eds.). (2013). Runoff prediction in ungauged basins: A synthesis across processes, places, and scales. Cambridge University Press.
  • Celeste, A. B., & Billib, M. (2009). Evaluation of stochastic reservoir operation optimization models. Advances in Water Resources, 32(9), 1429–1443. https://doi.org/10.1016/j.advwatres.2009.06.008
  • Chandramouli, V., & Raman, H. (2001). Multi-reservoir modelling with dynamic programming and neural networks. Journal of Water Resources Planning and Management, 127(2), 89–98. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:2(89)
  • Chang, L. C., & Chang, F. J. (2009). A multi-objective evolutionary algorithm for operating a parallel reservoir system. Journal of Hydrology, 377(1-2), 12–20. https://doi.org/10.1016/j.jhydrol.2009.07.061
  • Dawson, C. W., & Wilby, R. (1998). An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal, 43(1), 47–66. https://doi.org/10.1080/02626669809492102
  • Deka, P. C., & Chandramouli, V. (2009). Fuzzy neural network modelling of reservoir operation. Journal of Water Resources Planning and Management, 135(1), 5–12. https://doi.org/10.1061/(ASCE)0733-9496(2009)135:1(5)
  • Draper, A., & Lund, J. (2004). Optimal hedging and carryover storage value. Journal of Water Resources Planning and Management, 130(1), 83–87. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(83)
  • Ehteram, M., Mousavi, S. F., Karami, H., Farzin, S., Singh, V. P., Chau, K. W., & El-Shafie, A. (2018). Reservoir operation based on evolutionary algorithms and multi-criteria decision-making under climate change and uncertainty. Journal of Hydroinformatics, 20(2), 332–355. https://doi.org/10.2166/hydro.2018.094
  • Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., & Dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011
  • Fisher, R. A., & Yates, F. (1938). Statistical tables for biological, agricultural, and medical research. Oliver and Boyd.
  • Ginting, B. M., Harlan, D., Taufik, A., & Ginting, H. (2017). Optimization of reservoir operation using linear program, a case study of Riam Jerawi Reservoir, Indonesia. International Journal of River Basin Management, 15(2), 187–198. https://doi.org/10.1080/15715124.2017.1298604
  • Goor, Q., Kelman, R., & Tilmant, A. (2010). Optimal multipurpose-multireservoir operation model with variable productivity of hydropower plants. Journal of Water Resources Planning and Management, 137(3), 258–267. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000117
  • Gowda, C. C., & Mayya, S. G. (2015). Evaluation of the small storage reservoirs during their operation in series for nonmonsoon periods. Aquatic Procedia, 4, 1150–1154. https://doi.org/10.1016/j.aqpro.2015.02.146
  • Guimarães Santos, C. A., & Silva, G. B. L. D. (2014). Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrological Sciences Journal, 59(2), 312–324. https://doi.org/10.1080/02626667.2013.800944
  • Hagan, M.T and Menhaj, M.B., (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5 (6), 989–993. https://doi.org/10.1109/72.329697.
  • Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20. https://doi.org/10.1029/WR018i001p00014
  • He, S., Yin, X. A., Yu, C., Xu, Z., & Yang, Z. (2018). Quantifying parameter uncertainty in reservoir operation associated with environmental flow management. Journal of Cleaner Production, 176, 1271–1282. https://doi.org/10.1016/j.jclepro.2017.11.246
  • Hsu, S. K. (1995). Shortage indices for water-resources planning in Taiwan. Journal of Water Resources Planning and Management, 121(2), 119–131. https://doi.org/10.1061/(ASCE)0733-9496(1995)121:2(119)
  • Jager, H. I., & McManamay, R. A. (2014). Comment on “Cumulative biophysical impact of small and large hydropower development in Nu River, China” by Kelly M. Kibler and Desiree D. Tullos. Water Resources Research, 50(1), 758–759. https://doi.org/10.1002/2013WR014378
  • Jain, A., Sudheer, K. P., & Srinivasulu, S. (2004). Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrological Processes, 18(3), 571–581. https://doi.org/10.1002/hyp.5502
  • Jang, S., Kim, J. M., Lim, K. S., Ryoo, K., & Park, J. H. (2017). Development of Reservoir Operation Rules for Sustainable Water Supply Considering Climate Change on Multi-Purpose Dams in Korea. In: World Environ. Water Resources Congress, 453–460. https://doi.org/10.1061/9780784480618.046.
  • Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1994). Neural networks for river flow prediction. Journal of Computing in Civil Engineering, 8(2), 201–220. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(201)
  • Kasturirangan, K., Babu, C. R., Mauskar, J. M., Chopra, K., Kishwan, J., Shankar, D., Narain, P. S., Tyagi, R. A., & Chandrasekharan, I. (2013). Report of the High-level Working Group on the Western Ghats, Ministry of Environ. Forests. Government of India.
  • Kibler, K. M., & Tullos, D. D. (2013). Cumulative biophysical impact of small and large hydropower development in Nu River, China. Water Resources Research, 49(6), 3104–3118. https://doi.org/10.1002/wrcr.20243
  • Kitanidis, P. K., & Bras, R. L. (1980). Real-time forecasting with a conceptual logic model: 2. Applications and results. Water Resources Research, 16(6), 1034–1044. https://doi.org/10.1029/WR016i006p01034
  • Kjeldsen, T. R., & Rosbjerg, D. (2004). Choice of reliability, resilience, and vulnerability estimators for risk assessments of water resources systems. Hydrological Sciences Journal, 49(5), 5. https://doi.org/10.1623/hysj.49.5.755.55136
  • Klemes, V. (1977). Value of information in reservoir optimization. Water Resources Research, 13(5), 837–850. https://doi.org/10.1029/WR013i005p00837
  • Labadie, J. W. (2004). Optimal operation of multi-reservoir systems: State-of-the-art review. Journal of Water Resources Planning and Management, 130(2), 93–111. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(93).
  • Leopold, L. B., Wolman, M. G., & Miller, J. P. (1995). Fluvial processes in geomorphology. Dover Publ.
  • Lian, J., Dang, L., & Ma, C. (2016). Hydrologic modification and vanishing self-organized criticality of river flows caused by dam operations. Journal of Hydrologic Engineering, 21(12), 04016050. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001458
  • Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1981). Water resource systems planning and analysis. Prentice-Hall.
  • Loukas, A., & Vasiliades, L. (2014). Streamflow simulation methods for ungauged and poorly gauged watershed. Natural Hazards and Earth System Sciences, 14(7), 1641–1661. https://doi.org/10.5194/nhess-14-1641-2014
  • Lund, J. R., & Guzman, J. (1999). Some derived operating rules for reservoirs in series or parallel. Journal of Water Resources Planning and Management, 125(3), 143–153. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:3(143)
  • Macian-Sorribes, H., & Pulido-Velazquez, M. (2020). Inferring efficient operating rules in multi-reservoir water resource systems: A review. WIRES Water, 7(1), e1400. https://doi.org/10.1002/wat2.1400
  • Mateus, C., & Tullos, D. (2017). Reliability, sensitivity, and uncertainty of reservoir performance under climate variability in basins with different hydrogeologic settings in the Northwestern United States. International Journal of River Basin Management, 15(1), 21–37. https://doi.org/10.1080/15715124.2016.1247361
  • Minns, A. W., & Hall, M. J. (1996). Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41(3), 399–417. https://doi.org/10.1080/02626669609491511
  • Minor Irrigation Department. (2012). Minor irrigation schemes of Dakshina Kannada and Udupi districts, A Report, Minor Irrigation Department, Govt. of Karnataka, Mangalore, 143–147.
  • Mohamoud, Y. M. (2008). Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves. Hydrological Sciences Journal, 53(4), 706–724. https://doi.org/10.1623/hysj.53.4.706
  • Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4), 525–533. https://doi.org/10.1016/S0893-6080(05)80056-5
  • Montgomery, D. C. (2008). Design and analysis of experiments 5th ed. John Wiley & Sons, 296.
  • Moore, R. D., Trubilowicz, J. W., & Buttle, J. M. (2011). Prediction of the streamflow regime and annual runoff for ungauged basins using a distributed monthly water balance model. JAWRA Journal of the American Water Resources Association, 48(1), 32–42. https://doi.org/10.1111/j.1752-1688.2011.00595.x
  • Moy, W. S., Cohon, J. L., & ReVelle, C. S. (1986). A programming model for the analysis of the reliability, resilience, and vulnerability of a water supply reservoir. Water Resources Research, 22(4), 489–498. https://doi.org/10.1029/WR022i004p00489
  • Müftüoğlu, R. F. (1984). New models for non-linear catchment analysis. Journal of Hydrology, 73(3-4), 335–357. https://doi.org/10.1016/0022-1694(84)90007-6
  • Nash, J., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Neelakantan, T. R., & Pundarikanthan, N. V. (1999). Hedging rule optimization for water supply reservoirs system. Water Resources Management, 13(6), 409–426. https://doi.org/10.1023/A:1008157316584
  • Oliveira, R., & Loucks, D. P. (1997). Operating rules for multi-reservoir systems. Water Resources Research, 33(4), 839–852. https://doi.org/10.1029/96WR03745
  • Parappagoudar, M. B., Pratihar, D. K., & Datta, G. L. (2007). Linear and non-linear statistical modelling of green sand mould system. International Journal of Cast Metals Research, 20(1), 1–13. https://doi.org/10.1179/136404607X184952
  • Rajmohan, T., & Palanikumar, K. (2013). Application of the central composite design in the optimization of machining parameters in drilling hybrid metal matrix composites. Measurement, 46(4), 1470–1481. https://doi.org/10.1016/j.measurement.2012.11.034
  • Raju, V. S., & Paul, K. V. (1985). Regional deposits—Laterites. In: Proc., Indian contribution to Geotechnical Engg., Indian Geotech. Soc., New Delhi, 42–48.
  • Raman, H., & Chandramouli, V. (1996). Deriving a general operating policy for reservoirs using neural network. Journal of Water Resources Planning and Management, 122(5), 342–347. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:5(342)
  • Sajikumar, N. (2015). Discussion of “Comparison between response surface models and artificial neural networks in hydrologic forecasting” by Jianjun Yu, Xiaosheng Qin, Ole Larsen, and LHC Chua. Journal of Hydrologic Engineering, 20(5), 07014015. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001132
  • Seibert, J., & Beven, K. J. (2009). Gauging the ungauged basin: How many discharge measurements are needed? Hydrology and Earth System Sciences, 13(6), 883–892. www.hydrol-earth-syst-sci.net/13/883/2009/. https://doi.org/10.5194/hess-13-883-2009
  • Shamseldin, A. Y. (1997). Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology, 199(3), 272–294. https://doi.org/10.1016/S0022-1694(96)03330-6
  • Shetkar, R. V., & Mahesha, A. (2011a). Tropical, seasonal river basin development: Hydrogeological analysis. Journal of Hydrologic Engineering, 16(3), 280–291. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000328
  • Shetkar, R. V., & Mahesha, A. (2011b). Tropical, seasonal river basin development through a series of vented dams. Journal of Hydrologic Engineering, 16(3), 292–302. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000316
  • Shiau, J. T. (2009). Optimization of reservoir hedging rules using a multi-objective genetic algorithm. Journal of Water Resources Planning and Management, 135(5), 355–363. https://doi.org/10.1061/(ASCE)0733-9496(2009)135:5(355)
  • Shih, J. S., & ReVelle, C. (1994). Water-supply operations during drought: Continuous hedging rule. Journal of Water Resources Planning and Management, 120(5), 613–629. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:5(613)
  • Shih, J. S., & ReVelle, C. (1995). Water supply operations during drought: A discrete hedging rule. European Journal of Operational Research, 82(1), 163–175. https://doi.org/10.1016/0377-2217(93)E0237-R
  • Srinivasan, K., & Kumar, K. (2018). Multi-objective simulation-optimization model for long-term reservoir operation using a piecewise linear hedging rule. Water Resources Management, 32(5), 1901–1911. https://doi.org/10.1007/s11269-018-1911-y
  • Srinivasan, K., & Philipose, M. C. (1996). Effect of hedging on over-year reservoir performance. Water Resources Management, 12(2), 95–120. https://doi.org/10.1023/A:1007936115706
  • Stagge, J. H., & Moglen, G. E. (2017). Water resources adaptation to climate and demand change in the potomac river. Journal of Hydrologic Engineering, 22(11), 04017050. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001579
  • Sudheer, K. P., Gosain, A. K., & Ramasastri, K. S. (2002). A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes, 16(6), 1325–1330. https://doi.org/10.1002/hyp.554
  • Tokar, A. S., & Markus, M. (2000). Precipitation-runoff modelling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering, 5(2), 156–161. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(156)
  • Tu, M. Y., Hsu, N. S., & Yeh, W. W. G. (2003). Optimization of reservoir management and operation with hedging rules. Journal of Water Resources Planning and Management, 129(2), 86–97. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:2(86)
  • Wan, W., Guo, X., Lei, X., Jiang, Y., & Wang, H. (2018). A novel optimization method for multi-reservoir operation policy derivation in complex inter-basin water transfer system. Water Resources Management, 32(1), 31–51. https://doi.org/10.1007/s11269-017-1735-1
  • Wu, X., Li, S., Cheng, C., Miao, S., & Ying, Q. (2019). Simulation-Optimization model to derive operation rules of multiple cascaded reservoirs for nash equilibrium. Journal of Water Resources Planning and Management, 145(5), 04019013. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001057
  • Xu, C., Xu, Z., & Yang, Z. (2020). Reservoir operation optimization for balancing hydropower generation and biodiversity conservation in a downstream wetland. Journal of Cleaner Production, 245, 118885. https://doi.org/10.1016/j.jclepro.2019.118885
  • Yaseen, Z. M., Fu, M., Wang, C., Mohtar, W. H. M. W., Deo, R. C., & El-Shafie, A. (2018). Application of the hybrid artificial neural network coupled with rolling mechanism and grey model algorithms for streamflow forecasting over multiple time horizons. Water Resources Management, 32(5), 1883–1899. https://doi.org/10.1016/j.omega.2011.10.003
  • Yu, J., Qin, X., Larsen, O., & Chua, L. H. C. (2014). Comparison between response surface models and artificial neural networks in hydrologic forecasting. Journal of Hydrologic Engineering, 19(3), 473–481. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000827
  • Zhang, Y., & Chiew, F. H. S. (2009). Relative merits of different methods for runoff predictions in ungauged catchments. Water Resources Research, 45(7), W07412. https://doi.org/10.1029/2008WR007504
  • Zhao, Z., Shen, J., Cheng, C., Guo, Y., & Wang, Y. (2017). Multi-Objective Optimization of Multi-Reservoir Operation Rules with Controlling Critical Water Levels. In: World Environ and Water Resour. Congress, pp. 490–499. https://doi.org/10.1061/9780784480595.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.