326
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Thiosemicarbazone Schiff base ligands and their complexes with nickel, palladium and platinum show anticancer and antibacterial activities

ORCID Icon
Pages 138-171 | Received 20 Feb 2023, Accepted 31 Aug 2023, Published online: 11 Sep 2023

References

  • Arafath MA, Adam F, Ahamed MB, et al. Ni (II), Pd (II) and Pt (II) complexes with SNO-group thiosemicarbazone and DMSO: synthesis, characterization, DFT, molecular docking and cytotoxicity. J Mol Struc. 2023;1278:134887.
  • Arafath MA, Adam F, Razali MR, et al. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde. J Mol Struc. 2017;1130:791–798.
  • Schiff H. Mittheilungen aus dem Universitätslaboratorium in Pisa: eine neue Reihe organischer Basen. Justus Liebigs Ann Chem. 1864;131:118–119.
  • Patai S. Chemistry of the carbon-nitrogen double bond. New York (NY): Wiley; 1970.
  • Trost BM, Fleming I. Comprehensive organic synthesis: selectivity, strategy, and efficiency in modern organic chemistry. Vol. 8. [Place Unknown]: Elsevier; 1991.
  • Whitesell JK. Comprehensive organic synthesis: In comprehensive organic synthesis. Oxford: Publisher unknown; 1991; p. 703–732.
  • Vigato P A, Tamburini S. The challenge of cyclic and acyclic schiff bases and related derivatives. Coord Chem Rev. 2004;248:1717–2128.
  • Freeman W, Mock W, Cucurbituril SN. J American Chem Soc. 1981;103:7367–7368.
  • Hanifehpour Y, Mirtamizdoust B, Khomami B, et al. Effects of halogen bonding in chemical activity of lead(II) electron pair: sonochemical synthesis, structural studies, and thermal analysis of novel lead(II) nano coordination polymer. Zeits für Anorgani Allgeme Chem. 2015;641:2466–2472.
  • Hanifehpour Y, Mirtamizdoust B, Hatami M, et al. Synthesis and structural characterization of new bismuth(III) nano coordination polymer: a precursor to produce pure phase nano-sized bismuth(III) oxide. J Mol Struc. 2015;1091:43–48.
  • Hanifehpour Y, Mirtamizdoust B, Joo SW. Sonochemical synthesis and characterization of the new micro-hexagonal-rod lead(II)-azido coordination compound. J Inorg Organome Poly Mat. 2012;22:916–922.
  • Hanifehpour Y, Mirtamizdoust B, Morsali A, et al. Sonochemical syntheses of binuclear lead(II)-azido supramolecule with ligand 3, 4, 7, 8-tetramethyl-1, 10-phenanthroline as precursor for preparation of lead(II) oxide nanoparticles. Ultrason Sonochem. 2015;23:275–281.
  • Singh K, Barwa MS, Tyagi P. Synthesis and characterization of cobalt(II),: nickel(II), copper(II) and zinc(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1, 2, 4-triazine. Europ J med Chem. 2007;42:394–402.
  • Creaven BS, Duff B, Egan DA, et al. Anticancer and antifungal activity of copper(II) complexes of quinolin-2 (1H)-one-derived Schiff bases. Inorg Chimi Acta. 2010;363:4048–4058.
  • Zhong X, Wei HL, Liu WS, et al. The crystal structures of copper(II), manganese(II), and nickel(II) complexes of a (Z)-2-hydroxy-N′-(2-oxoindolin-3-ylidene)benzohydrazide potential antitumor agents. Bioorg Medi Chem Lett. 2007;17:3774–3777.
  • Asiri AM, Khan SA. Synthesis and anti-bacterial activities of some novel Schiff bases derived from aminophenazone. Molecules. 2010;15:6850–6858.
  • Singh K, Barwa MS, Tyagi P. Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Euro J Med Chem. 2006;41:147–153.
  • Petering H, Buskirk H, Underwood G. The anti-tumor activity of 2-keto-3-ethoxybutyraldehyde bis (thiosemicarbazone) and related compounds. Cancer Res. 1964;24:367–372.
  • Campbell MJ. Transition metal complexes of thiosemicarbazide and thiosemicarbazones. Coord Chem Rev. 1975;15:279–319.
  • Pandeya S, Dimmock J. Recent evaluations of thiosemicarbazones and semicarbazones and related compounds for antineoplastic and anticonvulsant activities. Pharmazie. 1993;48:659–666.
  • Prakash G, Manikandan R, Viswanathamurthi P, et al. Ruthenium(III) S-methyl isothiosemicarbazone Schiff base complexes bearing PPh3/AsPh3 coligand: synthesis, structure and biological investigations, including antioxidant, DNA and protein interaction, and in vitro anticancer activities. J Photochem Photobio B: Biology. 2014;138:63–74.
  • Leovac VM, Jovanović LS, Jevtović VS, et al. Transition metal complexes with thiosemicarbazide-based ligand – Part LV: synthesis and X-ray structural study of novel Ni(II) complexes with pyridoxal semicarbazone and pyridoxal thiosemicarbazone. Polyhedron. 2007;26:2971–2978.
  • Al-Amiery AA, Al-Majedy YK, Ibrahim HH, et al. Antioxidant, antimicrobial, and theoretical studies of the thiosemicarbazone derivative Schiff base 2-(2-imino-1-methylimidazolidin-4-ylidene) hydrazinecarbothioamide (IMHC). Org Med Chem Lett. 2012;2:4.
  • Mohamed GG, Omar M, Ibrahim AA. Biological activity studies on metal complexes of novel tridentate schiff base ligand. spectroscopic and thermal characterization. Europ J Med Chem. 2009;44:4801–4812.
  • Arion V, Revenco M, Gradinaru J, et al. Mixed macrocyclic coordination compounds containing thiosemicarbazide and crown-ether moieties (synthesis, structure and properties). Rev Inorg Chem. 2001;21:1–42.
  • Leovac V, Češljević V. Coordination chemistry of isothiosemicarbazide and its derivatives. Serbia: Faculty of Science, Novi Sad Serbian; 2002.
  • Chandra S, Sangeetika X. EPR, magnetic and spectral studies of copper (II) and nickel(II) complexes of schiff base macrocyclic ligand derived from thiosemicarbazide and glyoxal. Spectrochimica Acta Part A: Mol Biomol Spectr. 2004;60:147–153.
  • Singh NK, Srivastava A, Sodhi A, et al. In vitro and in vivo antitumour studies of a new thiosemicarbazide derivative and its complexes with 3d-metal ions. Tran Met Chem. 2000;25:133–140.
  • Gerbeleu NV, Arion VB, Burgess JP. Template synthesis of macrocyclic compounds. [Place Unknown]: Wiley; 2008.
  • Li Y, Shi W, Ma J, et al. A novel optical probe for Hg2+ in aqueous media based on mono-thiosemicarbazone Schiff base. J Photochem Photobiol A. 2017;338:1–7.
  • Hosseini-Yazdi SA, Hosseinpour S, Khandar AA, et al. Copper(II) and nickel(II) complexes with two new bis (thiosemicarbazone) ligands: synthesis, characterization, X-ray crystal structures and their electrochemistry behavior. Inorg Chim Acta. 2015;427:124–130.
  • Blower PJ, Castle TC, Cowley AR, et al. Structural trends in copper(II) bis (thiosemicarbazone) radiopharmaceuticals. Dalt Trans. 2003;23:4416–4425.
  • Jasinski JP, Bianchani JR, Cueva J, et al. Spectral and structural studies of the copper(II) complexes of 3, 4-hexanedione Bis(3-azacyclothiosemicarbazones). Zeitsch für Anorga Allgeme Chem. 2003;629:202–206.
  • Bilyj JK, Harmer JR, Bernhardt PV. Formation and reactivity of copper acetylacetone bis (thiosemicarbazone) complexes. Eur J Inorg Chem. 2018;2018(43):4731–4741.
  • Lobana TS, Sharma R, Bawa G, et al. Bonding and structure trends of thiosemicarbazone derivatives of metals an overview. Coord Chem Rev. 2009;253:977–1055.
  • Chebanu V, Samus N. Study of iron(III), chromium(III) and cobalt(III) complexes with semicarbazones of 5CL-salicylaldehyde and 5BR-salicylaldehyde. Zh Neorg Khim. 1976;21:3280–3284.
  • Padhye S, and Kauffman GB. Transition metal complexes of semicarbazones and thiosemicarbazones. Coord Chem Rev.1985;63:127–160.
  • Damit NS, Hamid MH, Rahman NS, et al. Synthesis, structural characterisation and antibacterial activities of lead(II) and some transition metal complexes derived from quinoline-2-carboxaldehyde 4-methyl-3-thiosemicarbazone. Inorga Chimi Acta. 2021;527:120557.
  • Bilyj JK, Silajew NV, Hanson G R, et al. Trivalent copper stabilised by acetylacetone dithiocarbazate Schiff base ligands: structural, spectroscopic and electrochemical properties. Dalton Trans. 2019;48(41):15501–15514.
  • Gingras B, Somorjai R, Bayley C. The preparation of some thiosemicarbazones and their copper complexes. Canad J Chem. 1961;39:973–985.
  • Patil M, Shah J. Synthesis and physicochemical studies on Ni(II) complex of 2-hydroxy-acetophenonethiosemicarbazone and its square-planar adducts with nitrogen donors. Proceedings of the Indian Academy of Sciences-Chemical Sciences; India: Springer. 1980;89(4):387–390.
  • Dave L, Thampy S. Pyridine adduct of nickel(II) thiosemicarbazones. J Indian Chem Soc. 1981;58:538.
  • West DX, Padhye SB, Sonawane PB. Structural and physical correlations in the biological properties of transition metal heterocyclic thiosemicarbazone and S-alkyldithiocarbazate complexes. In Complex chemistry. Berlin(Heidelberg):: Springer; 1991. p. 1–50.
  • West DX, Liberta AE, Padhye SB, et al. Thiosemicarbazone complexes of copper(II): structural and biological studies. Coord Chem Rev. 1993;123:49–71.
  • Quiroga AG, Pérez JM, López-Solera I, et al. Novel tetranuclear orthometalated complexes of Pd(II) and Pt(II) derived from p-isopropylbenzaldehyde thiosemicarbazone with cytotoxic activity in cis-DDP resistant tumor cell lines. Interaction of these complexes with DNA. J Med Chem. 1998;41:1399–1408.
  • Casas J, Garcıa-Tasende M, Sordo J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord Chem Rev. 2000;209:197–261.
  • Casas J, Garcıa-Tasende M, Sordo J. Structural aspects of the coordination chemistry of organothallium(III) and organomercury(II) derivatives. Coord Chem Rev. 1999;193:283–359.
  • Liberta AE, West DX. Antifungal and antitumor activity of heterocyclic thiosemicarbazones and their metal complexes: current status. Biometals. 1992;5:121–126.
  • Ali MA, Majumder S-u-H, Butcher RJ, et al. The preparation and characterization of bis-chelated nickel(II) complexes of the 6-methylpyridine-2-carboxaldehyde Schiff bases of S-alkyldithiocarbazates and the X-ray crystal structure of the bis {S-methyl-β-N-(6-methylpyrid-2-yl)-methylenedithio carbazato}nickel(II) complex. Polyhedron. 1997;16:2749–2754.
  • Chandra S, Jain D, Sharma AK, et al. Coordination modes of a Schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II),: nickel(II) and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies. Molecules. 2009;14:174–190.
  • Biswas A, Das LK, Drew MG, et al. Synthesis, crystal structures, magnetic properties and catecholase activity of double phenoxido-bridged penta-coordinated dinuclear nickel(II) complexes derived from reduced Schiff-base ligands: mechanistic inference of catecholase activity. Inorga Chem. 2012;51:7993–8001.
  • Galal SA, Hegab KH, Kassab AS, et al. New transition metal ion complexes with benzimidazole-5-carboxylic acid hydrazides with antitumor activity. Europ J Med Chem. 2009;44:1500–1508.
  • Dinda R, Schmiesing CS, Sinn E, et al. Mixed-ligand nickel(II) thiosemicarbazone complexes: synthesis, characterization and biological evaluation. Polyhedron. 2013;50:354–363.
  • Hosseini-Yazdi S A, Mirzaahmadi A, Khandar AA, et al. Synthesis, characterization and in vitro biological activities of new water-soluble copper(II), zinc(II), and nickel(II) complexes with sulfonato-substituted Schiff base ligand. Inorga Chimi Acta. 2017;458:171–180.
  • Suni V, Kurup MRP, Nethaji M. Structural and spectral investigations on some new Ni(II) complexes of di-2-pyridyl ketone N(4)-phenylthiosemicarbazone. Polyhedron. 2007;26:3097–3102.
  • Leovac V, Ribár B, Argay G, et al. Synthesis and X-ray crystal structure of the first phosphorus-bonded thiosemicarbazone complex [2-(diphenylphosphino)benzalde hydethiosemicarbazonato(1-)]pyridine-nickel(II)-nitrate. J Coord Chem. 1996;39:11–19.
  • Souza P, Navarro P, Matesanz AI, et al. Ni(II) complexes of methyl (2-pyridyl)-ketone thiosemicarbazone. crystal structure of isothio-cyanato(methyl(2-pyridyl)ketonethiosemicarbazon ATO)nickel(II). J Coord Chem. 1999;48:79–86.
  • Sreekanth A, Suni V, John RP, et al. Bis(μ-phenyl 2-pyridyl ketone N4, N4-butane-1, 4-diylthiosemicarbazonato)bis[chlorocopper(II)]. Acta Crystallographica Section C: Cryst Struc Commun. 2005;61:m284–m286.
  • West DX, Lockwood MA, Liberta AE, et al. Spectral nature, antifungal activity and molecular structure of metal complexes of acetylpyrazine 4N-substituted thiosemicarbazones. Trans Metal Chem. 1993;18:221–227.
  • Lobana TS, Kumari P, Hundal G, et al. Metal derivatives of N1-substituted thiosemicarbazones: synthesis, structures and spectroscopy of nickel(II) and cobalt(III) complexes. Inorga Chimi Acta. 2013;394:605–615.
  • Soriano-Garcia M, Toscano R, Valdes-Martinez J. Structure of ammine [salicyaldehyde4-phenylthiosemicarbazonato(2–)]nickel(II),[Ni(C14H11N3OS)(NH3)]. Acta Crystallographica Section C: Cryst Struc Commun. 1985;41:498–500.
  • Valdes-Martinez J, Hernández-Ortega S, Bautista Jimenez V. Ammine [2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazonato] nickel(II). Acta Crystallo Sec E: Struc Reports Online. 2002;58:m710–m711.
  • Arafath MA, Al-Suede FS, Adam F, et al. Schiff base-nickel, palladium, and platinum complexes derived from N-cyclohexyl hydrazine carbothioamide and 3-hydroxy-4-methoxy benzaldehyde: selective antiproliferative and proapoptotic effects against colorectal carcinoma. Drug Dev Res. 2019;80:778–790.
  • Akbari A, Ghateazadeh H, Takjoo R, et al. Synthesis & crystal structures of four new biochemical active Ni(II) complexes of thiosemicarbazone and isothiosemicarbazone-based ligands: In vitro antimicrobial study. J Mol Struc. 2019;1181:287–294.
  • Kumar LV, Sunitha S, Nath GR. Antioxidant, antidiabetic and anticancer studies of nickel complex of Vanillin-4-Methyl-4-Phenyl-3-Thiosemicarbazone. Mater Today Proc. 2021;41:669–675.
  • Sardroud SJ, Hosseini-Yazdi SA, Mahdavi M, et al. Synthesis, characterization and in vitro evaluation of anticancer activity of a new water-soluble thiosemicarbazone ligand and its complexes. Polyhedron. 2020;175:114218.
  • Savir S, Liew JW, Vythilingam I, et al. Nickel (II) complexes with polyhydroxybenzaldehyde and O, N, S tridentate Thiosemicarbazone ligands: synthesis, cytotoxicity, antimalarial activity, and molecular docking studies. J Mol Struc. 2021;1242:130815.
  • Stone N, Stock R. Complications following permanent prostate brachytherapy. Eur Urol. 2002;41:427–433.
  • Bermejo E, Carballo R, Castiñeiras A, et al. Synthesis, structural characteristics and biological activities of complexes of ZnII, CdII, HgII, PdII, and PtII with 2-acetylpyridine 4-methylthiosemicarbazone. Europ J Inorga Chem. 1999;1999:965–973.
  • Biyala MK, Sharma K, Swami M, et al. Spectral and biocidal studies of palladium(II) and platinum(II) complexes with monobasic bidentate Schiff bases. Trans Metal Chem. 2008;33:377–381.
  • Kontek R, Matawska-Wasowska K, Kalinowska-Lis U, et al. Evaluation of cytotoxicity of new trans-palladium(II) complex in human cells in vitro. Acta Pol Pharm. 2011;68:127–136.
  • Kizilcikli I, Kurt Y, Akkurt B, et al. Antimicrobial activity of a series of thiosemicarbazones and their ZnII and PdII complexes. Folia Microbiol. 2007;52:15–25.
  • Mehta B, Shaikh J. Synthesis, characterisation, X-ray diffraction and antimicrobial studies of Pd(II), Rh(III) and Ru(III) complexes of thiosemicarbazones. J Ind Counc Chem. 2009;26:1–6.
  • Prabhakaran R, Renukadevi S, Karvembu R, et al. Structural and biological studies of mononuclear palladium(II) complexes containing N-substituted thiosemicarbazones. Europ J Med Chem. 2008;43:268–273.
  • Mahadevappa DS, Gowda BT, Murthy ASA. Some thiosemicarbazide complexes of Pt(II) & Pd(II). Indian J Chem. 1976;14A:985–987.
  • Ilies D-C, Pahontu E, Shova S, et al. Synthesis, characterization and crystal structures of nickel(II), palladium(II) and copper(II) complexes with 2-furaldehyde-4-phenylthiosemicarbazone. Polyhedron. 2013;51:307–315.
  • Alonso R, Bermejo E, Custiñeiras A, et al. Structural characterization of the pyrrole-2-carboxaldehydethiosemicarbazonc and its cyclometallathiosemicarbazones with nickel(II), palladium(II), and platinum(II). Zeitschrift für Anorganische und Allgemeine Chemie. 1997;623:818–824.
  • Suresh C, Deshpande A, Tavale S, et al. Crystal structure of bis-(thiophene-2-carboxaldehyde-4-phenyl-thiosemicarbazonato)-palladium(II). J Crystallo Spect Research. 1991;21:485–487.
  • Yadav PN, Demertzis MA, Kovala-Demertzi D, et al. Palladium(II) complexes of 4-formylantipyrine N(3)-substituted thiosemi carbazones: first example of X-ray crystal structure and description of bonding properties. Inorga Chimica Acta. 2003;349:30–36.
  • Vila JM, Pereira T, Amoedo A, et al. The key role of sulfur in thiosemicarbazone compounds. crystal and molecular structure of [Pd{4-MeOC6H4C(Me) = NN = C(S)NHPh}2]. J Organom Chem. 2001;623:176–184.
  • Matesanz AI, Perles J, Souza P. New palladium and platinum complexes with bioactive 3, 5-diacetyl-1, 2, 4-triazol bis (4-cyclohexyl thiosemicarbazone) ligand: chemistry, antiproliferative activity and preliminary toxicity studies. Dalton Tran. 2012;41:12538–12547.
  • Stringer T, Hendricks DT, Guzgay H, et al. Synthesis and characterization of multimeric salicylaldimine thiosemicarbazones and their Pd(II) and Pt(II) complexes. Polyhedron. 2012;31:486–493.
  • Kokina T, Sheludyakova L, Eremina YA, et al. Complexes of Cu(I) and Pd(II) with (+)camphor and (–)-cavrone thiosemicarbazones: synthesis, structure, and cytotoxicity of the Pd(II) complex. Russian J General Chem. 2017;87:2332–2342.
  • Munikumari G, Konakanchi R, Nishtala VB, et al. Palladium(II) complexes of 5-substituted isatin thiosemicarbazones: synthesis, spectroscopic characterization, biological evaluation and in silico docking studies. Synth Commun. 2019;49:146–158.
  • Haribabu J, Balachandran C, Tamizh MM, et al. Unprecedented formation of palladium(II)-pyrazole based thiourea from chromone thiosemicarbazone and [PdCl2(PPh3)2]: interaction with biomolecules and apoptosis through mitochondrial signaling pathway. J Inorga Biochem. 2020;205:110988.
  • Chung P, Huentupil Y, Rabanal W, et al. Synthesis, characterization, X-ray structure, electrochemistry, photocatalytic activity and DFT studies of heterotrinuclear Ni(II), Pd(II) and Zn(II) complexes containing a formylferrocene thiosemicarbazone ligand. Appl Organome Chem. 2020;34(12):e5974.
  • Elsayed SA, Badr HE, di Biase A, et al. Synthesis, characterization of ruthenium(II), nickel(II), palladium(II), and platinum(II) triphenylphosphine-based complexes bearing an ONS-donor chelating agent: interaction with biomolecules, antioxidant, in vitro cytotoxic, apoptotic activity and cell cycle analysis. J Ino Biochem. 2021;223:111549.
  • Kovala-Demertzi D, Demertzis MA, Filiou E, et al. Platinum(II) and palladium(II) complexes with 2-acetyl pyridine 4N-ethyl thiosemicarbazone able to overcome the cisplatin resistance. Structure, antibacterial activity and DNA strand breakage. Biometals. 2003;16:411–418.
  • Kovala-Demertzi D, Yadav PN, Demertzis MA, et al. Synthesis, crystal structure, spectral properties and cytotoxic activity of platinum(II) complexes of 2-acetyl pyridine and pyridine-2-carbaldehyde N(4)-ethyl-thiosemicarbazones. J Inorg Biochem. 2000;78:347–354.
  • Anacona JR, Bastardo E, Camus J. Manganese(II) and palladium(II) complexes containing a new macrocyclic Schiff base ligand: antibacterial properties. Trans Metal Chem. 1999;24:478–480.
  • Khokhar FM, Jahangir TM, Khuhawar MY, et al. High performance liquid chromatographic separation of platinum (II), gold (III), vanadium (IV), vanadium (V), molybdenum (VI) and analysis of cisplatin as platinum (II) in cis-plasol injection, urine, and blood serum using pyridoxal-4-phenyl-3-thiosemicarbazone as complexing reagent. J Liq Chromatogra Rela Tech. 2020;43:29–36.
  • Lanjwani SN, Zhu R, Khuhawar MY, et al. High performance liquid chromatographic determination of platinum in blood and urine samples of cancer patients after administration of cisplatin drug using solvent extraction and N, N′-bis (salicylidene)-1, 2-propanediamine as complexation reagent. J Pharma Biomed Analy. 2006;40(4):833–839.
  • Goldberg KI, Valdes-Martınez J, Espinosa-Pérez G, et al. Palladium(II) and platinum(II) complexes of 6-methyl-2-acetylpyridine 3-hexamethyleneiminylthiosemicarbazones: a structural and spectral study. Polyhedron. 1999;18:1177–1182.
  • Kovala-Demertzi D, Demertzis MA, Miller J, et al. Platinum(II) complexes with 2-acetyl pyridine thiosemicarbazone: synthesis, crystal structure, spectral properties, antimicrobial and antitumour activity. J Inorga Biochem. 2001;86:555–563.
  • Vázquez-Garcıa D, Fernández A, Fernández JJ, et al. New cyclometallated platinum(II) compounds with thiosemicarbazones: crystal and molecular structure of [Pt{4-MeC6H3C(Me) = NN =C(S)NH2}(PPh3)]. J Organome Chem. 2000;595:199–207.
  • You D, Ko J, Choi M. Cycloplatinated complexes of Thiosemicarbazones. Synthesis and crystal structure of [Ph2PC6H4CHNNC(S)HCH3PtCl]. Bulletin-Korean Chemical Society. 1997;18:305–310.
  • Papathanasis L, Demertzis MA, Yadav PN, et al. Palladium(II) and platinum(II) complexes of 2-hydroxy acetophenone N(4)-ethylthiosemicarbazone–crystal structure and description of bonding properties. Inorga Chimi Acta. 2004;357:4113–4120.
  • Ali AA, Nimir H, Aktas C, et al. Organoplatinum(II) complexes with 2-acetylthiophene thiosemicarbazone: synthesis, characterization, crystal structures, and in vitro antitumor activity. Organometallics. 2012;31:2256–2262.
  • Tavares T, Paschoal D, Motta E, et al. Platinum(II) and palladium(II) aryl-thiosemicarbazone complexes: synthesis, characterization, molecular modeling, cytotoxicity, and antimicrobial activity. J Coord Chem. 2014;67:956–968.
  • Bessega T, Chaves OA, Martins F M, et al. Coordination of Zn(II), Pd(II) and Pt(II) with ligands derived from diformylpyridine and thiosemicarbazide: synthesis, structural characterization. DNA/BSA binding properties and molecular docking analysis. Inorga Chimica Acta. 2019;496:119049.
  • Mbugua SN, Njenga LW, Odhiambo RA, et al. Synthesis, characterization, and DNA-binding kinetics of new Pd(II) and Pt(II) Thiosemicarbazone complexes: spectral, structural, and anticancer evaluation. J Chem. 2020;2020:1–17. https://doi.org/10.1155/2020/3863269.
  • Grunfeld E, Ramirez A, Hunter M, et al. Women’s knowledge and beliefs regarding breast cancer. Br J Cancer. 2002;86:1373–1378.
  • Siegel R, DeSantis C, Virgo K, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62:220–241.
  • Cuthbertson C. Transforming subjectivities: global mental health, biopolitics, & depression in Chile [Dissertation], Illinois:University of Illinois at Urbana-Champaign; 2014.
  • Pereira DM, Simões AE, Gomes SE, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7(23):34322.
  • Schoch S, Gajewski S, Rothfuß J, et al. Comparative study of the mode of action of clinically approved platinum-based chemotherapeutics. Int J Mol Sci. 2020;21(18):6928.
  • Forero-Torres A, Saleh MN, Galleshaw JA, et al. Pilot trial of preoperative (Neoadjuvant) Letrozole in combination with Bevacizumab in postmenopausal women with newly diagnosed estrogen receptor – or progesterone receptor – positive breast cancer. Clin Breast Cancer. 2010;10(4):275–280.
  • Casciato DA. Manual of clinical oncology: cancer chemotherapeutic agents. 6th edn. Philadelphia (PA): Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia; 2009; p. 46–99.
  • Farrell NP. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem Soc Rev. 2015;44(24):8773–8785.
  • Kalaivani P, Prabhakaran R, Ramachandran E, et al. Influence of terminal substitution on structural, DNA, protein binding, anticancer and antibacterial activities of palladium (II) complexes containing 3-methoxy salicylaldehyde-4(N) substituted thiosemicarbazones. Dalton Trans. 2012;41(8):2486–2499.
  • Sharma S, Singh SK, Chandra M, et al. DNA-binding behavior of ruthenium(II) complexes containing both group 15 donors and 2, 2′: 6′, 2 ″-terpyridine. J Inorga. Biochem. 2005;99:458–466.
  • Brockman RW, Thomson JR, Bell MJ, et al. Observations on the antileukemic activity of pyridine-2-carboxaldehyde thiosemicarbazone and thiocarbohydrazone. Cancer Res. 1956;16:167–170.
  • Ali MA, Livingstone S. Metal complexes of sulphur-nitrogen chelating agents. Coord Chem Rev. 1974;13:101–132.
  • Cleare M. Transition metal complexes in cancer chemotherapy. Coord Chem Rev. 1974;12:349–405.
  • Rosenberg B, Vancamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222(5191):385–386.
  • Rosenberg B, VanCamp L. The successful regression of large solid sarcoma 180 tumors by platinum compounds. Cancer Res. 1970;30:1799–1802.
  • Graham RD, Williams DR. The synthesis and screening for anti-bacterial,-cancer,-fungicidal and-viral activities of some complexes of palladium and nickel. J Inorga Nuclear Chem. 1979;41:1245–1249.
  • Padhye S, Afrasiabi Z, Sinn E, et al. Antitumor metallothiosemicarbazonates: structure and antitumor activity of palladium complex of phenanthrenequinone thiosemicarbazone. Inorga Chem. 2005;44:1154–1156.
  • Kovala-Demertzi D, Boccarelli A, Demertzis M, et al. In vitro antitumor activity of 2-acetyl pyridine 4N-ethyl thiosemicarbazone and its platinum(II) and palladium(II) complexes. Chemotherapy. 2007;53:148–152.
  • Haribabu J, Tamizh MM, Balachandran C, et al. Synthesis, structures and mechanistic pathways of anticancer activity of palladium(II) complexes with indole-3-carbaldehyde thiosemicarbazones. New J Chem. 2018;42:10818–10832.
  • Hall IH, Miller MC, West DX. Antineoplastic and cytotoxic activities of nickel(II) complexes of Thiosemicarbazones. Met-Based Drugs. 1997;4:581534.
  • Afrasiabi Z, Sinn E, Chen J, et al. Appended 1, 2-naphthoquinones as anticancer agents 1: synthesis, structural, spectral and antitumor activities of ortho-naphthaquinone thiosemicarbazone and its transition metal complexes. Inorga Chimica Acta. 2004;357:271–278.
  • Afrasiabi Z, Sinn E, Lin W, et al. Nickel(II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: synthesis, structure, spectroscopy, and biological activity. J Inorga Biochem. 2005;99:1526–1531.
  • Wang B-d, Yang Z-Y, Lü M-h, et al. Synthesis, characterization, cytotoxic activity and DNA binding Ni(II) complex with the 6-hydroxy chromone-3-carbaldehyde thiosemicarbazone. J Organome Chem. 2009;694:4069–4075.
  • Haribabu J, Jeyalakshmi K, Arun Y, et al. Synthesis, DNA/protein binding, molecular docking, DNA cleavage and in vitro anticancer activity of nickel(II) bis (thiosemicarbazone) complexes. RSC Adv. 2015;5:46031–46049.
  • Munikumari G, Konakanchi R, Nishtala VB, et al. Palladium (II) complexes of 5-substituted isatin thiosemicarbazones: synthesis, spectroscopic characterization, biological evaluation and in silico docking studies. Synth Commun. 2019;2;49(1):146–158.
  • Lakshmipraba J, Arunachalam S, Solomon RV, et al. Surfactant–copper(II) Schiff base complexes: synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity. J Biomol Struct Dyn. 2015;33(4):877–891.
  • Shivakumar K, Shashidhar Vithal RP, Halli M. Synthesis, spectral characterization and biological activity of benzofuran Schiff bases with Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes. J Coord Chem. 2008;61:2274–2287.
  • Hunashal RD, Satyanarayana D. One pot synthesis of 3-(substituted phenoxymethyl)-6-phenyl/substituted phenoxymethyl-1, 2, 4-triazolo [3, 4-b][1, 3, 4] thiadiazole derivatives as antimicrobial agents. Int J Pharm Biol Sci. 2012;3:83–192.
  • Tarafder MTH, Ali MA, Wee DJ, et al. Complexes of a tridentate ONS Schiff base. Synthesis and biological properties. Trans Metal Chem. 2000;25:456–460.
  • Dharmaraj N, Viswanathamurthi P, Natarajan K. Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Trans Metal Chem. 2001;26:105–109.
  • Routier S, Vezin H, Lamour E, et al. DNA cleavage by hydroxy-salicylidene-ethylendiamine-iron complexes. Nucleic Acids Res. 1999;27:4160–4166.
  • Singh N, Tripathi P, Bharty M, et al. Ni(II) and Mn(II) complexes of NNS tridentate ligand N′-[(2-methoxyphenyl) carbonothioyl] pyridine-2-carbohydrazide (H2mcph): synthesis, spectral and structural characterization. Polyhedron. 2010;2:1939–1945.
  • Walcourt A, Loyevsky M, Lovejoy DB, et al. Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and-sensitive parasites. Int J Biochem Cell Biol. 2004;36:401–407.
  • Arafath MA, Adam F, Hassan MZ. Synthesis, characterization, X-ray crystal structure and antibacterial activity of nickel, palladium and platinum complexes with Schiff base derived from N-cyclohexylhydrazinecarbothioamide and 5-(tert-butyl)-2-hydroxybenzaldehyde. Phosphorus, Sulfur Silicon Relat Elem. 2021;196(6):530–537.
  • Basuli F, Peng SM, Bhattacharya S. Unusual coordination mode of thiosemicarbazone ligands. A search for the origin. Inorga Chem. 2000;39:1120–1127.
  • Chakraborty J, Copper- PR. cobalt-and zinc(II) complexes with monofunctional bidentate Schiff base and monodentate neutral ligands. J Indian Chem Soci. 1996;73:191–193.
  • Klement R, Stock F, Elias H, et al. Copper(II) complexes with derivatives of salen and tetrahydrosalen: a spectroscopic, electrochemical and structural study. Polyhedron. 1999;18:3617–3628.
  • Chen J, Yw H, Liu G, et al. The cytotoxicity and mechanisms of 1, 2-naphthoquinone thiosemicarbazone and its metal derivatives against MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2004;197:40–48.
  • Quiroga AG, Ranninger CN. Contribution to the SAR field of metallated and coordination complexes: studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord Chem Rev. 2004;248:119–133.
  • Singh S, Bharti N, Mohapatra PP. Chemistry and biology of synthetic and naturally occurring antiamoebic agents†. Chem Rev. 2009;109:1900–1947.
  • Ejiah FN, Fasina TM, Familoni OB, et al. Substituent effect on spectral and antimicrobial activity of Schiff bases derived from aminobenzoic acids. Advan Biolog Chem. 2013;3(5):475. https://ir.unilag.edu.ng/handle/123456789/5269.
  • Siddiqui ZN, Farooq F, Musthafa TNM, et al. Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. J Saudi Chem Soci. 2013;17:237–243.
  • Kasuga NC, Sekino K, Ishikawa M, et al. Synthesis, structural characterization and antimicrobial activities of 12 zinc(II) complexes with four thiosemicarbazone and two semicarbazone ligands. J Inorga. Biochem. 2003;96:298–310.
  • Tarafder M, Chew KB, Crouse KA, et al. Synthesis and characterization of Cu(II), Ni(II) and Zn(II) metal complexes of bidentate NS isomeric Schiff bases derived from S-methyldithiocarbazate (SMDTC): bioactivity of the bidentate NS isomeric Schiff bases, some of their Cu(II), Ni(II) and Zn(II) complexes and the X-ray structure of the bis [S-methyl-β-N-(2-furyl-methyl)methylenedithiocarbazato]zinc(II)complex. Polyhedron. 2002;21:2683–2690.
  • Mehta B, Shaikh J. Synthesis, characterisation, X-ray diffraction and antimicrobial studies of Pd(II), Rh(III) and Ru(III) complexes of thiosemicarbazones. J Ind Counc Chem. 2009;26:1–6.
  • Tyagi M, Chandra S. Synthesis,: characterization and biocidal properties of platinum metal complexes derived from 2, 6-diacetylpyridine (bis thiosemicarbazone). Open J Inorga Chem. 2012;2:41–48.
  • Khan SA, Asiri AM, Al-Amry K, et al. Synthesis, characterization, electrochemical studies, and in vitro antibacterial activity of novel thiosemicarbazone and its Cu(II), Ni(II), and Co(II) complexes. Scientific World J. 2014;9:592375.
  • El-Sawaf AK, El-Essawy F, Nassar AA, et al. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper (II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand. J Mol Struc. 2018;1157:381–394.
  • Kovala-Demertzi D, Miller JR, Kourkoumelis N, et al. Palladium(II) and platinum(II) complexes of pyridine-2-carbaldehyde thiosemicarbazone with potential biological activity. synthesis, structure and spectral properties. Extended network via hydrogen bond linkages of [Pd(PyTsc)Cl]. Polyhedron. 1999;18:1005–1013.
  • Leovac VM, Jovanović LS, Divjaković V, et al. Transition metal complexes with thiosemicarbazide-based ligands. Part LIV. Nickel(II) complexes with pyridoxal semi-(PLSC) and thiosemicarbazone (PLTSC). Crystal and molecular structure of [Ni(PLSC)(H2O)3](NO3)2 and [Ni(PLTSC-H)py]NO3. Polyhedron. 2007;26:49–58.
  • Hussein MA, Guan TS, Haque RA, et al. Synthesis and characterization of thiosemicarbazonato molybdenum(VI) complexes: In vitro DNA binding, cleavage, and antitumor activities. Polyhedron. 2015;85:93–103.
  • Rebolledo AP, de Lima GM, Gambi LN, et al. Tin(IV) complexes of 2-benzoylpyridine N(4)-phenyl-thiosemicarbazone: spectral characterization, structural studies and antifungal activity. Appl Organome. Chem. 2003;17:945–951.
  • Iskander MF, El-Sayed L, Salem NM, et al. Synthesis, characterization and magnetochemical studies of dicopper(II) complexes derived from bis(N-salicylidene) dicarboxylic acid dihydrazides. J Coord Chem. 2005;58:125–139.
  • Mendes IC, Moreira JP, Mangrich AS, et al. Coordination to copper(II) strongly enhances the in vitro antimicrobial activity of pyridine-derived N(4)-tolyl thiosemicarbazones. Polyhedron. 2007;26:3263–3270.
  • Polo-Cerón D. Cu(II) and Ni(II) complexes with new tridentate NNS thiosemicarbazones: synthesis, characterisation, DNA interaction, and antibacterial activity. Bioin Chem Appli. 2019;2019:1–15. https://doi.org/10.1155/2019/3520837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.