372
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Benzenesulfonamide based 1,3,4-oxadiazole derivatives: synthesis, pharmacokinetic property prediction, bovine carbonic anhydrase activity and molecular docking studies

, , , , &
Pages 65-83 | Received 20 Jun 2023, Accepted 07 Sep 2023, Published online: 09 Oct 2023

References

  • Kapoor M, Gupta MN. Lipase promiscuity and its biochemical applications. Process Biochem. 2012;47:555–569. doi: 10.1016/j.procbio.2012.01.011
  • Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev. 2012;112:4421–4468. doi: 10.1021/cr200176r
  • Khalifah RG, Silverman DN. Carbonic anhydrase kinetics and molecular function. In The carbonic anhydrases. Boston, MA: Springer US; 1991. p. 49–70.
  • Akkemik E, Çalişir Ü, Çiçek B. İnsan karbonik anhidraz I. II izoenzim aktiviteleri üzerine bazı tiyocrown eterlerin etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017:192–199. doi: 10.25092/baunfbed.340617
  • Musatat AB, Atahan A, Ergün A, et al. Synthesis, enzyme inhibition, and molecular docking studies of a novel chalcone series bearing benzothiazole scaffold. Biotechnol Appl Biochem. 2023. https://onlinelibrary.wiley.com/doi/10.1002bab.2445.
  • Atahan A, Gencer N, Bilen C, et al. Synthesis, biological activity and structure-activity relationship of novel diphenylurea derivatives containing tetrahydroquinoline as carbonic anhydrase I and II inhibitors. ChemistrySelect. 2018;3:529–534. doi: 10.1002/slct.201702562
  • Zheng Z, Liu Q, Kim W, et al. Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofilm of staphylococcus aureus. Future Med Chem. 2018;10:283–296.
  • Kumar BNP, Mohana KN, Mallesha L, et al. Synthesis and in vitro antimicrobial evaluation of new 1,3,4-oxadiazoles bearing 5-chloro-2-methoxyphenyl moiety. Int J Med Chem. 2013;2013:1–6.
  • El-Sayed WA, El-Essawy FA, Ali OM, et al. Anti-HIV activity of new substituted 1,3,4-oxadiazole derivatives and their acyclic nucleoside analogues. Zeitschrift für Naturforschung C. 2009;64:773–778.
  • Küçükgüzel ŞG, Oruç EE, Rollas S, et al. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur J Med Chem. 2002;37:197–206.
  • Akhter M, Husain A, Azad B, et al. Aroylpropionic acid based; 2:5), -disubstituted-1,3,4-oxadiazoles: synthesis and their anti-inflammatory and analgesic activities. Eur J Med Chem. 2009;44:2372–2378.
  • Trifilieff A, Wyss D, Walker C, et al. Pharmacological profile of a novel phosphodiesterase 4 inhibitor, 4-(8-benzo[1,2,5]oxadiazol-5-yl-[1,7]naphthyridin-6-yl)-benzoic acid (NVP-ABE171), a 1,7-naphthyridine derivative, with anti-inflammatory activities. J Pharmacol Exp Ther. 2002;301:241–248.
  • Harish KP, Mohana KN, Mallesha L, et al. Synthesis of novel: 1), -[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine derivatives and evaluation of their in vivo anticonvulsant activity. Eur J Med Chem. 2013;65:276–283.
  • Leite ACL, Vieira RFF, de Moreira MDR, et al. Genotoxic activity of 3-[3-phenyl-1,2,4-oxadiazol-5-yl] propionic acid and its peptidyl derivatives determined by Ames and SOS response tests. Mutat Res Genet Toxicol Environ Mutagen. 2005;588:166–171.
  • Anton AH. The relation between the binding of sulfonamides to albumin and their antibacterial efficacy. J Pharmacol Exp Therap. 1960;129:282–290.
  • Zoumpoulakis P, Ch C, Pairas G, et al. Synthesis of novel sulfonamide; 1(2):4), -triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological evaluation and conformational analysis studies. Bioorg Med Chem. 2012;20:1569–1583.
  • Selvam P, Chandramohan M, De Clercq E, et al. Synthesis and anti-HIV activity of 4-[(1,2-dihydro-2-oxo-3H-indol-3-ylidene)amino]-N(4,6-dimethyl-2-pyrimidinyl)-benzene sulfonamide and its derivatives. Eur J Pharm Sci. 2001;14:313–316. doi: 10.1016/S0928-0987(01)00197-X
  • Bano S, Javed K, Ahmad S, et al. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. Eur J Med Chem. 2011;46:5763–5768. doi: 10.1016/j.ejmech.2011.08.015
  • Ghorab MM, Ragab FA, Hamed MM. Design,: synthesis and anticancer evaluation of novel tetrahydroquinoline derivatives containing sulfonamide moiety. Eur J Med Chem. 2009;44:4211–4217. doi: 10.1016/j.ejmech.2009.05.017
  • Supuran CT, Briganti F, Tilli S, et al. Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorg Med Chem. 2001;9:703–714. doi: 10.1016/S0968-0896(00)00288-1
  • Kumar M, Ramasamy K, Mani V, et al. Synthesis, antimicrobial, anticancer, antiviral evaluation and QSAR studies of 4-(1-aryl-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzene sulfonamides. Arab J Chem. 2014;7:396–408. doi: 10.1016/j.arabjc.2012.12.005
  • Shailaja M, Manjula A, Rao V. Synthesis of novel 3, 5-disubstituted-4,5-dihydroisoxazoles and 3,4,5-trisubstituted isoxazoles and their biological activity. Indian J Chem. 2011;50:214–222.
  • Hammond GW, Slntchuk M, Lian CJ, et al. The treatment of chancroid: comparison of one week of sulfisoxazole with single dose doxycycline. J Antimicrob Chemother. 1979;5:261–265. doi: 10.1093/jac/5.3.261
  • Kaya MO, Gulec O, Arslan M. In vitro effects of new generation bisoxadiazole substituted sulfonamide derivatives on human serum Paraoxonase1 (PON1). Fresenius Environ Bull. 2018:3351–3358.
  • Şen E, Alım Z, Duran H, et al. Inhibitory effect of novel pyrazole carboxamide derivatives on human carbonic anhydrase enzyme. J Enzyme Inhib Med Chem. 2013;28:328–336. doi: 10.3109/14756366.2011.651465
  • Filimonov DA, Lagunin AA, Gloriozova TA, et al. Prediction of the biological activity spectra of organic compounds using the pass online Web resource. Chem Heterocycl Compd (N Y) [Internet]. 2014;50:444–457. doi: 10.1007/s10593-014-1496-1
  • Geronikaki A, Lagunin A, Poroikov V, et al. Computer aided prediction of biological activity spectra: evaluating versus known and predicting of new activities for thiazole derivatives. SAR QSAR Environ Res [Internet]. 2002;13:457–471. doi: 10.1080/10629360290014322
  • Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066–4072. doi: 10.1021/acs.jmedchem.5b00104
  • Hou T, Wang J, Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model. 2007;47:2408–2415.
  • Singh S, Singh J. Transdermal drug delivery by passive diffusion and iontophoresis: a review. Med Res Rev. 1993;13:569–621. doi: 10.1002/med.2610130504
  • Bhilare NV, Dhaneshwar SS, Mahadik KR, et al. Co-drug of isoniazid and sulfur containing antioxidant for attenuation of hepatotoxicity and treatment of tuberculosis. Drug Chem Toxicol. 2022;45:850–860. doi: 10.1080/01480545.2020.1778021
  • Badreddin Musatat A, Kılıçcıoğlu İ, Kurman Y, et al. Antimicrobial, antiproliferative effects and docking studies of methoxy group enriched coumarin-chalcone hybrids. Chem Biodivers. 2023.
  • McIntosh JEA. Carbonic anhydrase isoenzymes in the erythrocytes and uterus of the rabbit. Biochem J. 1970;120:299–310. doi: 10.1042/bj1200299
  • Rasool A, Batool Z, Khan M, et al. Bis-pharmacophore of cinnamaldehyde-clubbed thiosemicarbazones as potent carbonic anhydrase-II inhibitors. Sci Rep. 2022;12:16095–16106. doi: 10.1038/s41598-022-19975-y
  • Safak A, Hasan A, Ergun G, et al. Synthesis of; 1(2):4), -triazole-5-on derivatives and determination of carbonic anhydrase II isoenzyme inhibition effects. Bioorg Chem. 2019; 83;170–179.
  • Aygül İ, Güleşçe N. In vitro inhibition of bovine liver carbonic anhydrase II by some drugs. MAUN Fen Bil Dergi. 2015;3:334–339.
  • Khan M, Avula SK, Halim SA, et al. Biochemical and in silico inhibition of bovine and human carbonic anhydrase-II by: 1H–1.,2,3-triazole analogs. Front Chem. 2022;10:1072337.
  • Khan M, Halim SA, Shafiq Z, et al. Inhibitory efficacy of thiosemicarbazones for carbonic anhydrase II (bovine and human) as a target of calcification and tumorigenicity. Curr Pharm Des. 2022;28:3010–3022. doi: 10.2174/1381612828666220729105849
  • Khan A, Khan M, Halim SA, et al. Quinazolinones as competitive inhibitors of carbonic anhydrase-II (human and bovine): synthesis, in-vitro, in-silico, selectivity, and kinetics studies. Front Chem. 2020;8.
  • Bijari N, Ghobadi S, Mahdiuni H, et al. Spectroscopic and molecular modeling studies on binding of dorzolamide to bovine and human carbonic anhydrase II. Int J Biol Macromol. 2015;80:189–199. doi: 10.1016/j.ijbiomac.2015.06.028
  • Grosdidier A, Zoete V, Michielin O. Swissdock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res [Internet]. 2011;39:W270–W277. doi: 10.1093/nar/gkr366
  • Grosdidier A, Zoete V, Michielin O. Fast docking using the CHARMM force field with EADock DSS. J Comput Chem [Internet]. 2011;32:2149–2159. doi: 10.1002/jcc.21797
  • Jorge SD, Masunari A, Rangel-Yagui CO, et al. Design, synthesis, antimicrobial activity and molecular modeling studies of novel benzofuroxan derivatives against staphylococcus aureus. Bioorg Med Chem. 2009;17:3028–3036. doi: 10.1016/j.bmc.2009.03.011
  • Neeraja P, Srinivas S, Mukkanti K, et al. 1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: their synthesis and antibacterial evaluation. Bioorg Med Chem Lett. 2016;26:5212–5217.
  • Yung-Chi C, Prusoff WH. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–3108. doi: 10.1016/0006-2952(73)90196-2
  • Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17.
  • Dassault Systèmes BIOVIA. Discovery studio 2020 Client. 2020.
  • Neese F. Software update: the ORCA program system—version 5.0. WIRES Comput Mol Sci. 2022;12. doi: 10.1002/wcms.1606
  • Becke AD. A new mixing of hartree–fock and local density-functional theories. J Chem Phys. 1993;98:1372–1377. doi: 10.1063/1.464304
  • Lee C, Yang W, Parr RG. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785
  • Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. 1980;58:1200–1211. doi: 10.1139/p80-159
  • Stephens PJ, Devlin FJ, Chabalowski CF, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132:154104. doi: 10.1063/1.3382344
  • Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759
  • Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297. doi: 10.1039/b508541a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.