309
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Integrated oxidative-adsorptive desulfurization of model and real fuel oils over a Zn-impregnated hydroxyapatite-activated carbon (Zn/HA-AC) composite

, , &
Pages 217-238 | Received 08 Jun 2023, Accepted 20 Sep 2023, Published online: 08 Oct 2023

References

  • Lanju C, Shaohui G, Dishun Z. Oxidative desulfurization of simulated gasoline over metal oxide-loaded molecular sieve. Chin J Chem Eng. 2007;15:520–523. DOI:10.1016/S1004-9541(07)60118-9
  • Jadoon S, Amin AA, Mahmood HK, et al. Determination of the total sulphur content in Khurmala and Guwayar oil fields of Kurdistan region, Iraq. Am Sci Res J Eng Techn Sci. 2016;20:190–199.
  • Faseh NE, Abood HM. Desulfurization of dibenzothiophene from model oil by aluminum ammonium sulfate/urea (alum) ionic liquid analogue. Al Nahrain J Sci. 2020;23:8–17. DOI:10.22401/ANJS.23.2.02
  • Muhammad Y, Lu Y, Shen C, et al. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen. Energy Convers Manage. 2011;52:1364–1370. DOI:10.1016/j.enconman.2010.09.034
  • Rezvani MA, Shaterian M, Akbarzadeh F, et al. Deep oxidative desulfurization of gasoline induced by PMoCu@MgCu2O4-PVA composite as a high-performance heterogeneous nanocatalyst. Chem Eng J. 2018;333:537–544. DOI:10.1016/j.cej.2017.09.184
  • Huang D, Zhai Z, Lu Y, et al. Optimization of composition of a directly combined catalyst in dibenzothiophene oxidation for deep desulfurization. Ind Eng Chem Res. 2007;46:1447–1451. DOI:10.1021/ie0611857
  • Revelli A-L, Mutelet F, Jaubert J-N. Extraction of benzene or thiophene from n-heptane using ionic liquids. NMR and thermodynamic study. J Phys Chem B. 2010;114:4600–4608. DOI:10.1021/jp911978a
  • Kashif M, Sang Y, Mo S, et al. Deciphering the biodesulfurization pathway employing marine mangrove Bacillus aryabhattai strain NM1-A2 according to whole genome sequencing and transcriptome analyses. Genomics. 2023;115:110635, DOI:10.1016/j.ygeno.2023.110635
  • Ahmad W. Sulfur in petroleum: petroleum desulfurization techniques.In: Applying nanotechnology to the desulfurization process in petroleum engineering. IGI Global; 2016. p. 1–52. DOI:10.4018/978-1-4666-9545-0.ch001
  • Lin Y, Feng L, Li X, et al. Study on ultrasound-assisted oxidative desulfurization for crude oil. Ultrason Sonochem. 2020;63:104946, DOI:10.1016/j.ultsonch.2019.104946
  • Wang Y, Zhang G, Guan T, et al. Ultra-deep oxidative desulfurization of model oil catalyzed by in situ carbon-supported vanadium oxides using cumene hydroperoxide as oxidant. Chem Sel. 2020;5:2148–2156. DOI:10.1002/slct.201903893
  • Mokhtari B, Akbari A, Omidkhah M. Superior deep desulfurization of real diesel over MoO3/silica gel as an efficient catalyst for oxidation of refractory compounds. Energy Fuels. 2019;33:7276–7286. DOI:10.1021/acs.energyfuels.9b01646
  • Abro R, Abdeltawab AA, Al-Deyab SS, et al. A review of extractive desulfurization of fuel oils using ionic liquids. RSC Adv. 2014;4:35302–35317. DOI:10.1039/C4RA03478C
  • Sundararaman R, Ma X, Song C. Oxidative desulfurization of jet and diesel fuels using hydroperoxide generated in situ by catalytic air oxidation. Ind Eng Chem Res. 2010;49:5561–5568. DOI:10.1021/ie901812r
  • Subhan S, Rahman AU, Yaseen M, et al. Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant. Fuel. 2019;237:793–805. DOI:10.1016/j.fuel.2018.10.067
  • Muhammad Y, Shoukat A, Rahman AU, et al. Oxidative desulfurization of dibenzothiophene over Fe promoted Co–Mo/Al2O3 and Ni–Mo/Al2O3 catalysts using hydrogen peroxide and formic acid as oxidants. Chin J Chem Eng. 2018;26:593–600. DOI:10.1016/j.cjche.2017.05.015
  • Rajendran A, Cui  T-y, Fan H-x, et al. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J Mater Chem A. 2020;8:2246–2285. DOI:10.1039/C9TA12555H
  • Jiang Z, Hongying L, Zhang Y, et al. Oxidative desulfurization of fuel oils. Chin J Catal. 2011;32:707–715. DOI:10.1016/S1872-2067(10)60246-X
  • Zhao D-s, Sun Z-m, Li F-t, Shan H-d. Optimization of oxidative desulfurization of dibenzothiophene using acidic ionic liquid as catalytic solvent. J Fuel Chem Technol. 2009;37:194–198. DOI:10.1016/S1872-5813(09)60015-3
  • Deliyanni E, Seredych M, Bandosz TJ. Interactions of 4,6-dimethyldibenzothiophene with the surface of activated carbons. Langmuir. 2009;25:9302–9312. DOI:10.1021/la900854x
  • Yu C, Qiu JS, Sun YF, et al. Adsorption removal of thiophene and dibenzothiophene from oils with activated carbon as adsorbent: effect of surface chemistry. J Porous Mater. 2008;15:151–157. DOI:10.1007/s10934-007-9116-4
  • Saleh TA, Danmaliki GI. Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes. J Taiwan Inst Chem Eng. 2016;60:460–468. DOI:10.1016/j.jtice.2015.11.008
  • Saleh TA, Danmaliki GI, Shuaib TD. Nanocomposites and hybrid materials for adsorptive desulfurization.In: Applying nanotechnology to the desulfurization process in petroleum engineering: IGI Global; 2016. p. 129–153.
  • Saleh TA, Sulaiman KO, AL-Hammadi SA, et al. Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: with column system evaluation. J Clean Prod. 2017;154:401–412. DOI:10.1016/j.jclepro.2017.03.169
  • Ahmad W, Ahmad I, Ishaq M, et al. Adsorptive desulfurization of kerosene and diesel oil by Zn impregnated montmorollonite clay. Arab J Chem. 2017;10:S3263–S3S69. DOI:10.1016/j.arabjc.2013.12.025
  • Xiao J, Song C, Ma X, et al. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon. Ind Eng Chem Res. 2012;51:3436–3443. DOI:10.1021/ie202440t
  • Ungureanu DN, Angelescu N, Ion RM, et al. Synthesis and characterization of hydroxyapatite nanopowders by chemical precipitation. Bojkovic, Z; Kacprzyk, J; Mastorakis, N. 2011:296–301.
  • Yu H, Zhu J, Qiao R, et al. Facile preparation and controllable absorption of a composite based on PMo12/Ag nanoparticles: photodegradation activity and mechanism. Chem Sel. 2022;7:e202103668, DOI:10.1002/slct.202103668
  • Cai Y, Zhang S, Ong S-E, et al. Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on metallic implant for osseointegration and stability, hydroxyapatite coatings for biomedical applications. Boca Raton (FL): CRC Press; 2013:55–144.
  • Ocampo JIG, Sierra DME, Orozco CPO. Porous bodies of hydroxyapatite produced by a combination of the gel-casting and polymer sponge methods. J Adv Res. 2016;7:297–304. DOI:10.1016/j.jare.2015.06.006
  • Cengiz B, Gokce Y, Yildiz N, et al. Synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf A. 2008;322:29–33. DOI:10.1016/j.colsurfa.2008.02.011
  • Stango SAX, Vijayalakshmi U. Synthesis and characterization of hydroxyapatite/carboxylic acid functionalized MWCNTS composites and its triple layer coatings for biomedical applications. Ceram Int. 2019;45:69–81. DOI:10.1016/j.ceramint.2018.09.135
  • Shen W, Li Z, Liu Y. Surface chemical functional groups modification of porous carbon. Rec Paten Chem Eng. 2008;1:27–40. DOI:10.2174/2211334710801010027
  • Inal IIG, Holmes SM, Banford A, et al. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl Surf Sci. 2015;357:696–703. DOI:10.1016/j.apsusc.2015.09.067
  • Figueiredo JL, Pereira M, Freitas M, et al. Modification of the surface chemistry of activated carbons. Carbon. 1999;37:1379–1389.
  • Sun Z, Wang T, Zhang R, et al. Boosting hydrogen production via deoxygenation-sorption-enhanced biomass gasification. Bioresour Technol 2023;382:129197, DOI:10.1016/j.biortech.2023.129197
  • Ceyhan AA, Şahin Ö, Saka C, et al. A novel thermal process for activated carbon production from the vetch biomass with air at low temperature by two-stage procedure. J Anal Appl Pyrol. 2013;104:170–175. DOI:10.1016/j.jaap.2013.08.007
  • Sreekumar K, Ajith R, Rani R, et al. Sol gel synthesis and characterization of nanohydroxyapatite. Int J Appl Eng Res. 2015;10. https://www.researchgate.net/publication/280881035_Sol_Gel_Synthesis_and_Characterization_of_Nanohydroxyapatite
  • Sahoo B, Panda PK. Synthesis and characterization of manganese tetroxide (Mn3O4) nanofibers by electrospinning technique. J Adv Ceram. 2013;2:26–30. DOI:10.1007/s40145-013-0037-1
  • Kalyani P, Anitha A. Refuse derived energy – tea derived boric acid activated carbon as an electrode material for electrochemical capacitors. Port Electrochim Acta. 2013;31:165–174. DOI:10.4152/pea.201303165
  • Wang Z, Dai L, Yao J, et al. Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere. 2021;281:130718, DOI:10.1016/j.chemosphere.2021.130718
  • Qasim I, Mumtaz M, Nadeem K, et al. Zinc nanoparticles at intercrystallite sites of (Cu0. 5Tl0. 5) Ba2Ca3Cu4O12− δ superconductor. J Nanomater. 2016. DOI:10.1155/2016/9781790
  • Chen F, Wang Z-C, Lin C-J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett. 2002;57:858–861. DOI:10.1016/S0167-577X(02)00885-6
  • Oschatz S, Kohse S, Senz V, et al. Accelerated in vitro-calcification of potential urethane based heart valve replacement materials. Curren Direct Biomed Eng. 2018;4:221–224. DOI:10.1515/cdbme-2018-0054
  • 김종훈, 정성훈. Characterization of nano-scaled calcium phosphate particles made using microwave assisted synthesis. J Ceram Proc Res. 2012;13(1):32–34(3쪽).
  • Wang A, Dou Y, Yang X, et al. Efficient oxygen evolution reaction from iron-molybdenum nitride/molybdenum oxide heterostructured composites. Dalton Trans. 2023;52:11234–11242. DOI:10.1039/D3DT01295F
  • Erdem M, Orhan R, Şahin M, et al. Preparation and characterization of a novel activated carbon from vine shoots by ZnCl2 activation and investigation of Its rifampicine removal capability. Water Air Soil Pollut. 2016;227:1–14. DOI:10.1007/s11270-016-2929-5
  • Yao S, Liu Z, Shi Z. Response surface analysis of photocatalytic degradation of methyl tert-butyl ether by core/shell Fe3O4/ZnO nanoparticles. J Env Health Sci Eng. 2014;12:1–8. DOI:10.1186/2052-336X-12-1
  • Hu J, Zhao L, Luo J, et al. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: modifications, applications and perspectives. J Hazard Mater 2022;438:129437, DOI:10.1016/j.jhazmat.2022.129437
  • Kulal R, Jayanti I, Sambashivaiah S, et al. An in-vitro comparison of nano hydroxyapatite, novamin and proargin desensitizing toothpastes – a SEM study. J Clin Diagn Res. 2016;10:ZC51.
  • Shao L, Ren Z, Zhang G, et al. Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal. Mater Chem Phys. 2012;135:16–24. DOI:10.1016/j.matchemphys.2012.03.035
  • Marinah MA, Norhafiza IY, Hamzah S. Synthesis and characterization of hydroxyapatite from bulk seashells and its potential usage as lead ions adsorbent. Malays J Analyt Sci. 2017;21:571–584.
  • Afzalinia A, Mirzaie A, Nikseresht A, et al. Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn(II)-based MOF as catalyst. Ultrason Sonochem. 2017;34:713–720. DOI:10.1016/j.ultsonch.2016.07.006
  • Yang J, Ren S, Zhang T, et al. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO. Chem Eng J. 2020;379:122398, DOI:10.1016/j.cej.2019.122398
  • Tian Y, Yao Y, Zhi Y, et al. Combined extraction–oxidation system for oxidative desulfurization (ODS) of a model fuel. Energy Fuels. 2015;29:618–625. DOI:10.1021/ef502396b
  • Ali IS, Al-Janabi OYT, Al-Tikrity ET, et al. Adsorptive desulfurization of model and real fuel via wire-, rod-, and flower-like Fe3O4@MnO2@activated carbon made from palm kernel shells as newly designed magnetic nanoadsorbents. Fuel. 2023;340:127523, DOI:10.1016/j.fuel.2023.127523
  • Subhan S, Muhammad Y, Sahibzada M, et al. Studies on the selection of a catalyst–oxidant system for the energy-efficient desulfurization and denitrogenation of fuel oil at mild operating conditions. Energy Fuels. 2019;33:8423–8439. DOI:10.1021/acs.energyfuels.9b01950
  • Xie D, He Q, Su Y, et al. Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant. Chin J Catal. 2015;36:1205–1213. DOI:10.1016/S1872-2067(15)60897-X
  • Haghighat Mamaghani A, Fatemi S, Asgari M. Investigation of influential parameters in deep oxidative desulfurization of dibenzothiophene with hydrogen peroxide and formic acid. Int J Chem Eng. 2013. DOI:10.1155/2013/951045
  • Ukkirapandian V, Sadasivam V, Sivasankar B. Oxidation of dibenzothiophene and desulphurization of diesel. Pet Sci Technol. 2008;26:423–435. DOI:10.1080/10916460600809626
  • Yu F, Wang R. Deep oxidative desulfurization of dibenzothiophene in simulated oil and real diesel using heteropolyanion-substituted hydrotalcite-like compounds as catalysts. Molecules. 2013;18:13691–13704. DOI:10.3390/molecules181113691
  • Abdulateef LT, Nawaf AT, Al-Janabi OYT, et al. Batch oxidative desulfurization of model light gasoil over a bimetallic nanocatalyst. Chem Eng Technol. 2021;44:1708–1715. DOI:10.1002/ceat.202100027
  • Mjalli FS, Ahmed OU, Al-Wahaibi T, et al. Deep oxidative desulfurization of liquid fuels. Rev Chem Eng. 2014;30:337–378. DOI:10.1515/revce-2014-0001
  • Di Giuseppe A, Crucianelli M, De Angelis F, et al. Efficient oxidation of thiophene derivatives with homogeneous and heterogeneous MTO/H2O2 systems: a novel approach for, oxidative desulfurization (ODS) of diesel fuel. Appl Catal B. 2009;89:239–245. DOI:10.1016/j.apcatb.2009.02.009
  • Sadare OO, Daramola MO. Adsorptive desulfurization of dibenzothiophene (DBT) in model petroleum distillate using functionalized carbon nanotubes. Environ Sci Pollut Res. 2019;26:32746–32758. DOI:10.1007/s11356-019-05953-x
  • Riad M, Mikhail S. Zinc incorporated hydroxyapatite catalysts: preparation and characterization. Energy Sources Part A. 2013;35:445–454. DOI:10.1080/15567036.2010.512912
  • Yaseen M, Ullah S, Ahmad W, et al. Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils. Fuel. 2021;284:119102, DOI:10.1016/j.fuel.2020.119102
  • Julião D, Mirante F, Ribeiro SO, et al. Deep oxidative desulfurization of diesel fuels using homogeneous and SBA-15-supported peroxophosphotungstate catalysts. Fuel. 2019;241:616–624. DOI:10.1016/j.fuel.2018.11.095
  • Rezvani MA, Miri OF. Synthesis and characterization of PWMn/NiO/PAN nanosphere composite with superior catalytic activity for oxidative desulfurization of real fuel. Chem Eng J. 2019;369:775–783. DOI:10.1016/j.cej.2019.03.135
  • Ge J, Zhou Y, Yang Y, et al. Catalytic oxidative desulfurization of gasoline using ionic liquid emulsion system. Ind Eng Chem Res. 2011;50:13686–13692. DOI:10.1021/ie201325e
  • Liu Y-Y, Leus K, Sun Z, et al. Catalytic oxidative desulfurization of model and real diesel over a molybdenum anchored metal-organic framework. Micropor Mesopor Mater. 2019;277:245–252. DOI:10.1016/j.micromeso.2018.11.004
  • Zhou M, Meng W, Li Y, et al. Extractive and catalytic oxidative desulfurization of gasoline by methyltrioxorhenium in ionic liquids. Energy Fuels. 2014;28:516–521. DOI:10.1021/ef402103e
  • Yu G, Lu S, Chen H, et al. Diesel fuel desulfurization with hydrogen peroxide promoted by formic acid and catalyzed by activated carbon. Carbon. 2005;43:2285–2294. DOI:10.1016/j.carbon.2005.04.008
  • Andevary HH, Akbari A, Omidkhah M. High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim]FeCl4 as catalyst/extractant. Fuel Proc Technol. 2019;185:8–17. DOI:10.1016/j.fuproc.2018.11.014
  • Qi X, Tang X, Li Q, et al. Immediate oxidative desulfurization via Fe-containing Ti-nanotube triggered combined-radical mechanism. Catal Lett. 2023;153:2169–2175. DOI:10.1007/s10562-022-04152-7
  • Wang S, Li P, Hao L, et al. Oxidative desulfurization of model diesel using a fenton-like catalyst in the ionic liquid [dmim]BF4. Chem Eng Technol. 2017;40:555–560. DOI:10.1002/ceat.201600098
  • Zhang Q, Zhu M, Jones I, et al. Desulfurization of spent tire pyrolysis oil and its distillate via combined catalytic oxidation using H2O2with formic acid and selective adsorption over Al2O3. Energy Fuels. 2020;34:6209–6219. DOI:10.1021/acs.energyfuels.9b03968
  • Ahmad W, Ahmad I, Yaseen M. Desulfurization of liquid fuels by air assisted peracid oxidation system in the presence of Fe-ZSM-5 catalyst. Kor J Chem Eng. 2016;33:2530–2537. DOI:10.1007/s11814-016-0099-1
  • Bernal V, Giraldo L, Moreno-Piraján JC, et al. Mechanisms of methylparaben adsorption onto activated carbons: removal tests supported by a calorimetric study of the adsorbent–adsorbate interactions. Molecules. 2019;24:413, DOI:10.3390/molecules24030413

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.