137
Views
0
CrossRef citations to date
0
Altmetric
Mini-Review

Sulfenamide formation – chemical and biochemical reactions and their applications in cell biology

ORCID Icon & ORCID Icon
Pages 293-312 | Received 12 Jul 2023, Accepted 24 Oct 2023, Published online: 01 Nov 2023

References

  • Craine L, Raban M. The chemistry of sulfenamides. Chem Rev. 1989;89:689–712. doi:10.1021/cr00094a001
  • Patai S. Chapter 1: the chemistry of sulphenic acids and their derivatives. In: The chemistry of sulphenic acids and their derivatives. Wiley; 2010. p. 1–22. doi:10.1002/9780470772287
  • Benati L, Montevecchi PC, Spagnolo P. 4′-Nitroarenesulphenanilides: their use in the synthesis of unsymmetrical disulphides. Tetrahedron Lett. 1986;27:1739–1742. doi:10.1016/S0040-4039(00)84361-0
  • Heimer NE, Field L. Organic disulfides and related substances. XXIX. Studies in the chemistry of sulfenamides. J Org Chem. 1970;35:3012–3022. doi:10.1021/jo00834a035
  • Erol I. Synthesis and characterization of novel sulfonamide functionalized maleimide polymers: conventional kinetic analysis, antimicrobial activity and dielectric properties. J Mol Struct. 2022;1255:132362. doi:10.1016/j.molstruc.2022.132362
  • Devendar P, Yang G-F. Sulfur-containing agrochemicals. Cham: Springer; 2019. p. 35–78. doi:10.1007/978-3-030-25598-5_2
  • Sukul P, Spiteller M. Sulfonamides in the environment as veterinary drugs. Rev Environ Contam Toxicol. 2006;187:67–101.
  • Shelver WL, Shappell NW, Franek M, et al. ELISA for sulfonamides and its application for screening in water contamination. J Agric Food Chem. 2008;56:6609–6615. doi:10.1021/jf800657u
  • Markowicz-Piasecka M, Huttunen KM, Broncel M, et al. Sulfenamide and sulfonamide derivatives of metformin – a new option to improve endothelial function and plasma haemostasis. Sci Rep. 2019;91(9):1–19.
  • Ovung A, Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev. 2021;13:259. doi:10.1007/s12551-021-00795-9
  • Gradwell MHS, Stephenson NR. The action of N-(cyclohexylthio)phthalimide as a prevulcanization inhibitor of 2-bisbenzothiazole-2,2′-disulfide accelerated sulfur vulcanization. Rubber Chem Technol. 2001;74:44–56. doi:10.5254/1.3547638
  • Cao Y, Abdolmohammadi S, Ahmadi R, et al. Direct synthesis of sulfenamides, sulfinamides, and sulfonamides from thiols and amines. RSC Adv. 2021;11:32394–32407. doi:10.1039/D1RA04368D
  • Apaydın S, Török M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg Med Chem Lett. 2019;29:2042–2050. doi:10.1016/j.bmcl.2019.06.041
  • Nandi GC, Arvidsson PI. Sulfonimidamides: synthesis and applications in preparative organic chemistry. Adv Synth Catal. 2018;360:2976–3001. doi:10.1002/adsc.201800273
  • Wojaczyńska E, Wojaczyński J. Modern stereoselective synthesis of chiral sulfinyl compounds. Chem Rev. 2020;120:4578–4611. doi:10.1021/acs.chemrev.0c00002
  • Andresini M, Carret S, Degennaro L, et al. Multistep continuous flow synthesis of isolable NH2-sulfinamidines via nucleophilic addition to transient sulfurdiimide. Chem Eur J. 2022;28:e202202066. doi:10.1002/chem.202202066
  • Andresini M, Spennacchio M, Colella M, et al. Sulfinimidate esters as an electrophilic sulfinimidoyl motif source: synthesis of N-protected sulfilimines from grignard reagents. Org Lett. 2021;23:6850–6854. doi:10.1021/acs.orglett.1c02413
  • Raban M, Hu C, Craine LH. Stereochemistry in trivalent nitrogen compounds. 40. Torsional barriers in N-2,4-dinitrobenzenesulfenylbenzimidazoles. Tetrahedron Lett. 1984;25:1337–1340. doi:10.1016/S0040-4039(01)80151-9
  • Raban M, Chang H, Craine L, et al. N-(arylthio)benzimidazoles. Torsional barriers and 1,3 rearrangement. J Org Chem. 1985;50:2205–2210. doi:10.1021/jo00213a001
  • Armitage DA, Clark MJ, Kinsey AC. The sulphur(II)–nitrogen bond. Part III. The synthesis of the sulphur-(II)–nitrogen bond from sulphenates. J Chem Soc C Org. 1971:3867–3869. doi:10.1039/J39710003867.
  • Taniguchi N. Unsymmetrical disulfide and sulfenamide synthesis via reactions of thiosulfonates with thiols or amines. Tetrahedron. 2017;73:2030–2035. doi:10.1016/j.tet.2017.02.047
  • Dunbar JE, Rogers JH. Reactions of thiolsulfonates with amines. J Org Chem. 1966;31:2842–2846. doi:10.1021/jo01347a025
  • Major RT, Peterson LH. Aliphatic sulfenamides. J Am Chem Soc. 1956;78:6181–6182. doi:10.1021/ja01604a063
  • Taniguchi N. Copper-catalyzed formation of sulfur–nitrogen bonds by dehydrocoupling of thiols with amines. European J Org Chem. 2010;2010:2670–2673. doi:10.1002/ejoc.201000167
  • Taniguchi N. Copper-catalyzed synthesis of sulfenamides utilizing diaryl disulfides with alkyl amines. Synlett. 2007;2007:1917–1920. doi:10.1055/s-2007-984539
  • Harpp DN, Back TG. A general synthesis of sulfenamides. Tetrahedron Lett. 1971;12:4953–4956. doi:10.1016/S0040-4039(01)97598-7
  • Atkinson RS, Awad SB. Reactions of N-nitrenes with allyl aryl sulphides: N-heteroarylsulphenamides. J Chem Soc Perkin Trans. 1977;1:346–351. doi:10.1039/P19770000346.
  • Torii S, Tanaka H, Ukida M. Electrosynthesis of hetero-hetero atom bonds. 2. An efficient preparation of (2-benzothiazolyl)- and thiocarbamoylsulfenamides by electrolytic cross-coupling reaction Of 2-mercaptobenzothiazole, bis(2-benzothiazolyl) disulfide, and/or bis(dialkylthiocarb) disulfides with various amines. J Org Chem. 1978;43:3223–3227. doi:10.1021/jo00410a025
  • Zhang T, Wang R, Ma L, et al. High-efficiency synthesis of sulfenamides and disulfides by electrochemical dehydrogenative coupling. Environ Chem Lett. 2022:1–7. doi:10.1007/S10311-022-01459-0/FIGURES/2.
  • Kanakarajan K, Meier H. Ring expansion of benzothiete to 2,3-dihydrobenz[d]isothiazoles. Angew Chemie Int Ed Eng. 1984;23:244–244. doi:10.1002/anie.198402441
  • Torii S, Sayo N, Tanaka H. Reaction of sulfenamides with di-alkyl and trialkyl phosphites.an efficient synthesis of phosphoramidates by unusual substitution at S–N bond in (2-benzothiazolyl)sulfenamides. Chem Lett. 1980;9:695–698. doi:10.1246/cl.1980.695
  • Blake ES. The reaction of carbon disulfide with amine sulfides. J Am Chem Soc. 1943;65:1267–1269. doi:10.1021/ja01247a004
  • Zervas L, Borovas D, Gazis E. New methods in peptide synthesis. I. Tritylsulfenyl and o-nitrophenylsulfenyl groups as N-protecting groups. J Am Chem Soc. 1963;85:3660–3666. doi:10.1021/ja00905a029
  • Zincke T, Farr F. Über o-nitrophenylschwefelchlorid und umwandlungsprodukte. Justus Liebigs Ann Chem. 1912;391:57–88. doi:10.1002/jlac.19123910106
  • Datta M, Buglass AJ. Fast and efficient synthesis of sulfinamides by the oxidation of sulfenamides using potassium fluoride and m-chloroperoxybenzoic acid. Synth Commun. 2012;42:1760–1769. doi:10.1080/00397911.2010.543748
  • Atkinson RS, Judkins BD. Intermolecular trapping of sulphenylnitrenes by alkenes. Chem Soc Perkin Trans. 1981;1:2615–2619. doi:10.1039/p19810002615
  • Haas A. The chemistry of the sulfenic acids. Von E. Kühle. Georg Thieme publishers, Stuttgart 1973. 1. Aufl., VIII, 163 S., 123 Abb., geb. DM 59,-. Chemie Ing Tech. 1974;46:170–170. doi:10.1002/cite.330460420
  • Yang GF, Huang H, Nie X, et al. One-pot tandem oxidative bromination and amination of sulfenamide for the synthesis of sulfinamidines. J Org Chem. 2023;88:4581–4591. doi:10.1021/acs.joc.3c00042
  • Andresini M, Spennacchio M, Romanazzi G, et al. Synthesis of sulfinamidines and sulfinimidate esters by transfer of nitrogen to sulfenamides. Org Lett. 2020;22:7129–7134. doi:10.1021/acs.orglett.0c02471
  • Davis FA, Fretz ER, Horner CJ, et al. Chemistry of the sulfur-nitrogen bond.1,2 V. Evidence for an intermolecular rearrangement in the rearrangement of arenesulfenanilides to o- and p-aminodiphenyl sulfides. J Org Chem. 1973;38:695–699. doi:10.1021/jo00944a017
  • Ghose AK, Crippen GM, Revankar GR, et al. Analysis of the in vitro antiviral activity of certain ribonucleosides against parainfluenza virus using a novel computer aided receptor modeling procedure. J Med Chem. 1989;32:746–756. doi:10.1021/jm00124a005
  • Viswanadhan VN, Ghose AK, Hanna NB, et al. Analysis of the in vitro antitumor activity of novel purine-6-sulfenamide, -sulfinamide, and -sulfonamide nucleosides and certain related compounds using a computer-aided receptor modeling procedure. J Med Chem. 1991;34:526–532. doi:10.1021/jm00106a007
  • Revankar GR, Hanna NB, Imamura N, et al. Synthesis and in vivo antitumor activity of 2-amino-9ff-purine-6-sulfenamide, -sulfinamide, and-sulfonamide and related purine ribonucleosides. J Med Chem. 1990;33:121–128. doi:10.1021/jm00163a020
  • Stella VJ, Charman WNA, Naringrekar VH. Prodrugs: do they have advantages in clinical practice? Drugs. 1985;29:455–473. doi:10.2165/00003495-198529050-00002
  • Gillman KW, Starrett JE, Parker MF, et al. Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable γ-secretase inhibitor. ACS Med Chem Lett. 2010;1:120–124. doi:10.1021/ml1000239
  • Guarino VR, Olson RE, Everlof JG, et al. An amide-based sulfenamide prodrug of gamma secretase inhibitor BMS–708163 delivers parent drug from an oral conventional solid dosage form in male beagle dog. Bioorg Med Chem Lett. 2020;30:126856. doi:10.1016/j.bmcl.2019.126856
  • Role of prodrugs in solubility enhancement of drugs | PharmaTutor. Available from: https://www.pharmatutor.org/articles/role-prodrugs-solubility-enhancement-of-drugs.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25. doi:10.1016/S0169-409X(96)00423-1
  • Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46:75–87. doi:10.1016/S0169-409X(00)00130-7
  • Guarino VR, Karunaratne V, Stella VJ. Sulfenamides as prodrugs of NH-acidic compounds: a new prodrug option for the amide bond. Bioorg Med Chem Lett. 2007;17:4910–4913. doi:10.1016/j.bmcl.2007.06.037
  • Hemenway JN, Nti-Addae K, Guarino VR, et al. Preparation, characterization and in vivo conversion of new water-soluble sulfenamide prodrugs of carbamazepine. Bioorg Med Chem Lett. 2007;17:6629–6632. doi:10.1016/j.bmcl.2007.09.045
  • Nti-Addae KW, Guarino VR, Dalwadi G, et al. Determination of the permeability characteristics of Two sulfenamide prodrugs of linezolid across caco-2 cells. J Pharm Sci. 2012;101:3134–3141. doi:10.1002/jps.23084
  • Nti-Addae KW, Stella VJ. In vitro conversion of model sulfenamide prodrugs in the presence of small molecule thiols. J Pharm Sci. 2011;100:1001–1008. doi:10.1002/jps.22347
  • Ktihler TC, Fryklund J, Bergman N, et al. Structure-activity relationship of omeprazole and analogues as helicobacter pylori urease inhibitors. J Med Chem. 1995;38:4906–4916. doi:10.1021/jm00025a008
  • Jana K, Bandyopadhyay T, Ganguly B. Revealing the mechanistic pathway of acid activation of proton pump inhibitors to inhibit the gastric proton pump: a DFT study. J Phys Chem B. 2016;120:13031–13038. doi:10.1021/acs.jpcb.6b09334
  • Figura N, Crabtree JE, Dattilo M. In-vitro activity of lansoprazole against helicobacter pylori. J Antimicrob Chemother. 1997;39:585–590. doi:10.1093/jac/39.5.585
  • Shin JM, Besancon M, Simon A, et al. The site of action of pantoprazole in the gastric H+/K+-ATPase. Biochim Biophys Acta Biomembr. 1993;1148:223–233. doi:10.1016/0005-2736(93)90133-K
  • Kov L, Bohmerovj E, Butko P. Ionophores and intact cells I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982;721:341–348. doi:10.1016/0167-4889(82)90088-X
  • Revell KD, Heldreth B, Long TE, et al. N-thiolated β-lactams: studies on the mode of action and identification of a primary cellular target in staphylococcus aureus. Bioorg Med Chem. 2007;15:2453–2467. doi:10.1016/j.bmc.2006.12.027
  • Wang X, Jia X, Chang T, et al. Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J Hypertens. 2008;26:765–772. doi:10.1097/HJH.0b013e3282f4a13c
  • Markowicz-Piasecka M, Huttunen KM, Mateusiak L, et al. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharm Des. 2016;23:2532–2550.
  • Huttunen KM, Mannila A, Laine K, et al. The first bioreversible prodrug of metformin with improved lipophilicity and enhanced intestinal absorption. J Med Chem. 2009;52:4142–4148. doi:10.1021/jm900274q
  • Peura L, Huttunen KM. Sustained release of metformin via red blood cell accumulated sulfenamide prodrug. J Pharm Sci. 2014;103:2207–2210. doi:10.1002/jps.24040
  • Huttunen KM, Leppänen J, Laine K, et al. Convenient microwave-assisted synthesis of lipophilic sulfenamide prodrugs of metformin. Eur J Pharm Sci. 2013;49:624–628. doi:10.1016/j.ejps.2013.05.023
  • Torunoglu ST, Zajda A, Tampio J, et al. Metformin derivatives – researchers’ friends or foes? Biochem Pharmacol. 2023;215:115743. doi:10.1016/j.bcp.2023.115743
  • Trang A, Khandhar PB. Physiology, acetylcholinesterase. StatPearls. Treasure Island (FL): StatPearls Publishing; 2019.
  • Markowicz-Piasecka M, Sikora J, Mateusiak Ł, et al. Metformin and its sulfenamide prodrugs inhibit human cholinesterase activity. Oxid Med Cell Longev. 2017;2017:1–11. doi:10.1155/2017/7303096
  • Shimizu I, Yoshida Y, Suda M, et al. DNA damage response and metabolic disease. Cell Metab. 2014;20:967–977. doi:10.1016/j.cmet.2014.10.008
  • Greig NH, Utsuki T, Ingram DK, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA. 2005;102:17213–17218. doi:10.1073/pnas.0508575102
  • Sridhar GR, Rao AA, Srinivas K, et al. Butyrylcholinesterase in metabolic syndrome. Med Hypotheses. 2010;75:648–651. doi:10.1016/j.mehy.2010.08.008
  • Markowicz-Piasecka M, Huttunen KM, Mateusiak Ł, et al. Sulfenamide and sulfonamide derivatives of metformin can exert anticoagulant and profibrinolytic properties. Chem Biol Interact. 2018;284:126–136. doi:10.1016/j.cbi.2018.02.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.