65
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, spectroscopic and electrochemical investigation on the conformational features of meso-5-formylthien-2-ylporphyrins and its terpyridinylthien-2-ylporphyrin and Porphyrin-Corrole dyad

, , , &
Pages 184-197 | Received 12 May 2023, Accepted 31 Oct 2023, Published online: 08 Nov 2023

References

  • Collman JP, Boulatov R, Sunderland CJ, et al. Functional analogues of cytochrome c oxidase, myoglobin, and haemoglobin. Chem Rev. 2004;104:561–558. doi:10.1021/cr0206059
  • Lu H, Zhang XP. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem Soc Rev. 2011;40:1899–1909. doi:10.1039/C0CS00070A
  • Norvaiša K, Kielmann M, Senge MO. Porphyrins as colorimetric and photometric biosensors in modern bioanalytical systems. Chembiochem. 2020;21:1793–1807. doi:10.1002/cbic.202000067
  • Drain CM, Varotto A, Radivojevic I. Self-organized porphyrinic materials. Chem Rev. 2009;109:1630–1658. doi:10.1021/cr8002483
  • Taniguchi M, Lindsey JS, Bocian DF, et al. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP)-critical benchmark molecules in photochemistry and photosynthesis. J Photochem Photobiol C. 2021;46:100401, doi:10.1016/j.jphotochemrev.2020.100401
  • Prasath R, Bhavana P. β-Functionalized meso tetrahalothien-2-ylporphyrins: synthesis, spectral, and electrochemical properties. J Heterocyclic Chem. 2012;49(2012):1044–1049. doi:10.1002/jhet.923
  • Gupta I, Ravikanth M. Synthesis of meso-furyl porphyrins. Tetrahedron Lett. 2002;43:9453–9455. doi:10.1016/S0040-4039(02)02258-X
  • Guo C-C, Ren T-G, Wang J, et al. Sond, synthesis, characterization and fluorescence properties study of meso-tetrakis(1-arylpyrazole-4-yl)porphyrins. J Porphyrins Phthalocyanines. 2005;9:430–435. doi:10.1142/S1088424605000538
  • Kobuke Y, Miyaji H. Supramolecular stacks of bis(imidazolyl)porphyrin through metal coordination. Bull Chem Soc Jpn. 1996;69:3563–3569. doi:10.1246/bcsj.69.3563
  • Furuta H, Maeda H, Furuta T, et al. First synthesis of tetrapyrrolylporphyrin. Org Lett. 2000;2:187–189. doi:10.1021/ol9912783
  • Chen W, Ding Y, Akhigbe J, et al. Enhanced electrochemical oxygen reduction-based glucose sensing using glucose oxidase on nanodendritic poly[meso-tetrakis(2-thienyl)porphyrinato]cobalt(II)-SWNTs composite electrodes. Biosens Bioelectron. 2010;26:504–510. doi:10.1016/j.bios.2010.07.062
  • Urbani M, Grätzel M, Nazeeruddin MK, et al. Meso-substituted porphyrins for dye-sensitized solar cells. Chem Rev. 2014;114:12330–12396. doi:10.1021/cr5001964
  • Prasath R, Bhavana P, Ng SW, et al. Novel nitrothien-2-ylporphyrins: spectroscopic and electrochemical investigation on the role of conformation of porphyrins in their reactions. Inorganica Chim Acta. 2013;405:339–348. doi:10.1016/j.ica.2013.06.026
  • Adler AD, Longo FR, Finarelli JD, et al. A simplified synthesis for meso-tetraphenylporphine. J Org Chem. 1967;32:476–476. doi:10.1021/jo01288a053
  • Lindsey JS, Schreiman IC, Hsu HC, et al. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. J Org Chem. 1987;52:827–836. doi:10.1021/jo00381a022
  • Duncan TV, Rubtsov IV, Uyeda HT, et al. Highly conjugated (polypyridyl)metal−(porphinato)zinc(II) compounds: long-lived, high oscillator strength, excited-state absorbers having exceptional spectral coverage of the near-infrared. J Am Chem Soc. 2004;126:9474–9475. doi:10.1021/ja0400638
  • Duncan TV, Ishizuka T, Therien MJ, et al. Molecular engineering of intensely near-infrared absorbing excited states in highly conjugated oligo(porphinato)zinc−(polypyridyl)metal(II) supermolecules. J Am Chem Soc. 2007;129:9691–9703. doi:10.1021/ja0707512
  • Wu Z-Y, Huang LJ, Zhong R. Terpyridine-containing porphyrin and coordination assembly with fullerene-based pyridine for enhanced electrocatalytic oxygen evolution and photocurrent response. Polyhedron. 2021;194:114818. doi:10.1016/j.poly.2020.114818
  • Mahammed A, Gross Z. Milestones and most recent advances in Corrole’s Science and Technology. J Am Chem Soc. 2023;145:12429–12445. doi:10.1021/jacs.3c00282
  • Natale CD, Gros CP, Paolesse P. Corroles at work: a small macrocycle for great applications. Chem Soc Rev. 2022;51:1277–1335. doi:10.1039/D1CS00662B
  • Je′rôme F, Gros CP, Tardieux C, et al. Synthesis of a ‘face-to-face’ porphyrin-corrole. A potential precursor of a catalyst for the four-electron reduction of dioxygen. New J Chem. 1998;22:1327–1329. doi:10.1039/a805452e
  • Kadish KM, Frémond L, Ou Z, et al. Cobalt(III) Corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin−corrole dyads. J Am Chem Soc. 2005;127:5625–5631. doi:10.1021/ja0501060
  • Jérôme F, Barbe J-M, Gros CP, et al. Peculiar reactivity of face to face biscorrole and porphyrin–corrole with a nickel(II) salt. X-Ray structural characterization of a new nickel(II) bisoxocorrole. New J Chem. 2001;25:93–101. doi:10.1039/b007623f
  • Barbe J-M, Burdet F, Espinosa E, et al. New insights into the synthesis of porphyrin-corrole and biscorrole systems. J Porphyr Phthalocyanines. 2003;07:365–374. doi:10.1142/S1088424603000471
  • Hiroto S, Hisaki I, Shinokubo H, et al. Synthesis of corrole derivatives through regioselective ir-catalyzed direct borylation. Angew Chem Int Ed. 2005;44:6763–6766. doi:10.1002/anie.200502335
  • Murugavel M, Ramana Reddy RV, Dey D, et al. First example of a modular porphyrinoid assembly capable of stabilizing different metal ions in a single molecular scaffold. Chem Eur J. 2015;21:14280–14286. doi:10.1002/chem.201501471
  • Allinger NL, Nakazaki M, Zalkow V. The relative stabilities of cis and trans isomers. V. The bicyclo[5.2.0]nonanes. An extension of the conformational rule. J Am Chem Soc. 1959;81(15):4074–4080.
  • Silva AMG, Faustino MAF, Silva TMPC, et al. NMR characterisation of five isomeric β,β′-diformyl-meso-tetraphenylporphyrins. J Chem. Soc Perkin Trans. 2002;1:1774–1777. doi:10.1039/B203850A
  • Murugavel M, Reddy RVR, Sankar J. A new meso-meso directly-linked corrole–porphyrin–corrole hybrid: synthesis and photophysical properties. RSC Adv. 2014;4:13669–13672. doi:10.1039/C4RA01229A
  • Brückner C, Foss PCD, Sullivan JO, et al. Origin of the bathochromically shifted optical spectra of meso-tetrathien-2′- and 3′-ylporphyrins as compared to meso-tetraphenylporphyrin. Phys Chem Chem Phys. 2006;8:2402–2412. doi:10.1039/B600010J
  • Prasath R, Butcher RJ, Bhavana P. Nitrothienylporphyrins: synthesis, crystal structure and, the effect of position and number of nitro groups on the spectral and electrochemical properties. Spectrochim Acta A. 2012;87:258–264. doi:10.1016/j.saa.2011.11.049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.