135
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Photocatalytic oxidative-extractive desulfurization of dibenzothiophene under simulated solar light with MoS2-CeO2/Al2O3-SiO2 nano photocatalyst: effect of CeO2 content

, , , &
Pages 250-271 | Received 29 May 2023, Accepted 26 Dec 2023, Published online: 03 Jan 2024

References

  • Esmaili H, Hosseini SA. LaMnxCo1-xO3 (x = 0, 0.25) perovskites: novel nano catalysts for removal of thiophene compounds in fuels by catalytic and ultrasound-assisted oxidative desulfurization. ChemistrySelect. 2023;8:e202204509. doi:10.1002/slct.202204509
  • Hosseini SA, Majidi V, Abbasian AR. Photocatalytic desulfurization of dibenzothiophene by NiCo2O4 nanospinel obtained by an oxidative precipitation process modeling and optimization. J Sulfur Chem. 2018;39:119–129. doi:10.1080/17415993.2017.1369981
  • Mousavi-Kamazani M. Cube-like Cu/Cu2O/BiVO4/Bi7VO13 composite nanoparticles: facile sol-gel synthesis for photocatalytic desulfurization of thiophene under visible light. J Alloys Compd. 2020;823:153786. doi:10.1016/j.jallcom.2020.153786
  • Lin F, Jiang Z, Tang N, et al. Photocatalytic oxidation of thiophene on RuO2/SO42-TiO2: insights for cocatalyst and solid-acid. Appl Catal, B. 2016;188:253–258. doi:10.1016/j.apcatb.2016.02.016
  • Lin F, Shao Z, Li P, et al. Low-cost dual cocatalysts BiVO4 for highly efficient visible photocatalytic oxidation. RSC Adv. 2017;7:15053–15059. doi:10.1039/C6RA27559A
  • Yuan X, Li X, Zhang X, et al. Mos2 vertically grown on graphene with efficient electrocatalytic activity in Pt-free dye-sensitized solar cells. J Alloys Compd. 2018;731:685–692. doi:10.1016/j.jallcom.2017.08.208
  • Alhaddad M, Shawky A. Superior photooxidative desulfurization of thiophene by reduced graphene oxide-supported MoS2 nanoflakes under visible light. Fuel Process Technol. 2020;205:106453. doi:10.1016/j.fuproc.2020.106453
  • Guan Y, Wu J, Lin Y, et al. Solvent-exfoliation of transition-metal dichalcogenide MoS2 to provide more active sites for enhancing photocatalytic performance of BiOIO3/g-C3N4 photocatalyst. Appl Surf Sci. 2019;481:838–851. doi:10.1016/j.apsusc.2019.03.177
  • Moses PG, Hinnemann B, Topsøe H, et al. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study. J Catal. 2007;248:188–203. doi:10.1016/j.jcat.2007.02.028
  • Yin S, Chen R, Ji M, et al. Construction of ultrathin MoS2/Bi5O7I composites: effective charge separation and increased photocatalytic activity. J Colloid Interface Sci. 2020;560:475–484. doi:10.1016/j.jcis.2019.10.081
  • Zou X, Zhang J, Zhao X, et al. Mos2/RGO composites for photocatalytic degradation of ranitidine and elimination of NDMA formation potential under visible light. Chem Eng J. 2020;383:123084. doi:10.1016/j.cej.2019.123084
  • Fang S, Xin Y, Ge L, et al. Facile synthesis of CeO2 hollow structures with controllable morphology by template-engaged etching of Cu2O and their visible light photocatalytic performance. Appl Catal, B. 2015;179:458–467. doi:10.1016/j.apcatb.2015.05.051
  • Gong J, Meng F, Yang X, et al. Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties. J Alloys Compd. 2016;689:606–616. doi:10.1016/j.jallcom.2016.08.030
  • Swain G, Sultana S, Naik B, et al. Coupling of crumpled-type novel MoS2 with CeO2 nanoparticles: a noble-metal-free p–n heterojunction composite for visible light photocatalytic H2 production. ACS Omega. 2017;2:3745–3753. doi:10.1021/acsomega.7b00492
  • Liu X, Meng F, Yu B, et al. Self-assembly synthesis of flower-like CeO2/MoS2 heterojunction with enhancement of visible light photocatalytic activity for methyl orange. J Mater Sci: Mater Electron. 2020;31:6690–6697. doi:10.1007/s10854-020-03225-w
  • Ji R, Zhu Z, Ma W, et al. A heterojunction photocatalyst constructed by the modification of 2D-CeO2 on 2D-MoS2 nanosheets with enhanced degrading activity. Catal Sci Technol. 2020;10:788–800. doi:10.1039/C9CY02238D
  • Mohammadzadeh Yengejeh S, Allahyari S, Rahemi N. Efficient oxidative desulfurization of model fuel by visible-light-driven MoS2-CeO2/SiO2-Al2O3 nano photocatalyst coating. Process Saf Environ Prot. 2020;143:25–35. doi:10.1016/j.psep.2020.05.042
  • Ayala-G M, Puello E, Quintana P, et al. Comparison between alumina supported catalytic precursors and their application in thiophene hydrodesulfurization: (NH4)4[NiMo6O24H6]·5H2O/γ-Al2O3 and NiMoOx/γ-Al2O3 conventional systems. RSC Adv. 2015;5:102652–102662. doi:10.1039/C5RA17695F
  • Uddin MK, Mashkoor F, AlArifi IM, et al. Simple one-step synthesis process of novel MoS2@bentonite magnetic nanocomposite for efficient adsorption of crystal violet from aqueous solution. Mater Res Bull. 2021;139:111279. doi:10.1016/j.materresbull.2021.111279
  • Li X, Zhang Z, Yao C, et al. Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization. Appl Surf Sci. 2016;364:589–596. doi:10.1016/j.apsusc.2015.12.196
  • Alomairy S, Al-Buriahi MS, Abdel Wahab EA, et al. Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceram Int. 2021;47:17322–17330. doi:10.1016/j.ceramint.2021.03.045
  • Singh P, Ojha RP, Kumar S, et al. Fe-doped MoS2 nanomaterials with amplified peroxidase mimetic activity for the colorimetric detection of glutathione in human serum. Mater Chem Phys. 2021;267:124684. doi:10.1016/j.matchemphys.2021.124684
  • Rafiuddin Singh S. Preparation, characterization and electrical studies of polymer composite solid electrolyte (1-x) polyaniline-Ag3PO4. x Al2O3. Mater Today Proc. 2020;29:363–371.
  • Rajesh K, Sakthivel P, Santhanam A, et al. Incorporation of silver ion on structural and optical characteristics of CeO2 nanoparticles: white LED applications. Optik (Stuttg). 2020;216:164800. doi:10.1016/j.ijleo.2020.164800
  • Wan X, Chen C, Tian S, et al. Thermal characterization of net-like and form-stable ML/SiO2 composite as novel PCM for cold energy storage. J Energy Storage. 2020;28:101276. doi:10.1016/j.est.2020.101276
  • RodrıIĄguez-Castellon E, Jiménez-López A, Maireles-Torres P, et al. Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves. J Solid State Chem. 2003;175:159–169. doi:10.1016/S0022-4596(03)00218-4
  • Zoghi AM, Allahyari S. Multifunctional magnetic C3N4-rGO adsorbent with high hydrophobicity and simulated solar light-driven photocatalytic activity for oil spill removal. Sol Energy. 2022;237:320–332. doi:10.1016/j.solener.2022.04.005
  • Abedini F, Allahyari S, Rahemi N. Oxidative desulfurization of dibenzothiophene and simultaneous adsorption of products on BiOBr-C3N4/MCM-41 visible-light-driven core–shell nano photocatalyst. Appl Surf Sci. 2021;569:151086. doi:10.1016/j.apsusc.2021.151086
  • Ettekali N, Allahyari S, Rahemi N, et al. One-pot oxidative-adsorptive desulfurization of model and real fuel using micro-mesoporous SiO2 aerogel supported MoO3. Microporous Mesoporous Mater. 2021;326:111376. doi:10.1016/j.micromeso.2021.111376
  • Praveen P, Viruthagiri G, Mugundan S, et al. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles – Synthesized via sol–gel route. Spectrochim Acta, Part A. 2014;117:622–629. doi:10.1016/j.saa.2013.09.037
  • Lu X, Li X, Chen F, et al. Biotemplating synthesis of N-doped two-dimensional CeO2–TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. J Alloys Compd. 2020;815:152326. doi:10.1016/j.jallcom.2019.152326
  • Xu X, Wang M, Pei Y, et al. Sio2@Ag/AgCl: a low-cost and highly efficient plasmonic photocatalyst for degrading rhodamine B under visible light irradiation. RSC Adv. 2014;4:64747–64755. doi:10.1039/C4RA10843D
  • Abbasi Asl E, Haghighi M, Talati A. Sono-solvothermal fabrication of flowerlike Bi7O9I3-MgAl2O4 p-n nano-heterostructure photocatalyst with enhanced solar-light-driven degradation of methylene blue. Sol Energy. 2019;184:426–439. doi:10.1016/j.solener.2019.04.012
  • Li Z, Meng X, Zhang Z. Recent development on MoS2-based photocatalysis: a review. J Photochem Photobiol C. 2018;35:39–55. doi:10.1016/j.jphotochemrev.2017.12.002
  • Yin D, Zhao F, Zhang L, et al. Greatly enhanced photocatalytic activity of semiconductor CeO2 by integrating with upconversion nanocrystals and graphene. RSC Adv. 2016;6:103795–103802. doi:10.1039/C6RA19219J
  • Zhu K, Luan X, Matras-Postolek K, et al. 2D/2D mos2/g-C3N4 layered heterojunctions with enhanced interfacial electron coupling effect. J Electroanal Chem. 2021;893:115350. doi:10.1016/j.jelechem.2021.115350
  • Silambarasan K, Harish S, Hara K, et al. Ultrathin layered MoS2 and N-doped graphene quantum dots (N-GQDs) anchored reduced graphene oxide (rGO) nanocomposite-based counter electrode for dye-sensitized solar cells. Carbon N Y. 2021;181:107–117. doi:10.1016/j.carbon.2021.01.162
  • Li Z, Zhang J, Lv J, et al. Sustainable synthesis of CeO2/CdS-diethylenetriamine composites for enhanced photocatalytic hydrogen evolution under visible light. J Alloys Compd. 2018;758:162–170. doi:10.1016/j.jallcom.2018.05.115
  • Mehdi Sabzehmeidani M, Karimi H, Ghaedi M. Ceo2 nanofibers-CdS nanostructures n–n junction with enhanced visible-light photocatalytic activity. Arab J Chem. 2020;13:7583–7597. doi:10.1016/j.arabjc.2020.08.015
  • Huo Q, Liu G, Sun H, et al. CeO2-modified MIL-101(Fe) for photocatalysis extraction oxidation desulfurization of model oil under visible light irradiation. Chem Eng J. 2021;422:130036. doi:10.1016/j.cej.2021.130036
  • Li X, Ma S, Qian H, et al. Upconversion nanocomposite CeO2:Tm3+/attapulgite intermediated by carbon quantum dots for photocatalytic desulfurization. Powder Technol. 2019;351:38–45. doi:10.1016/j.powtec.2019.04.004
  • Mousavi-Kamazani M, Ashrafi S. Single-step sonochemical synthesis of Cu2O-CeO2 nanocomposites with enhanced photocatalytic oxidative desulfurization. Ultrason Sonochem. 2020;63:104948. doi:10.1016/j.ultsonch.2019.104948
  • Lu X, Li X, Qian J, et al. Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. J Alloys Compd. 2016;661:363–371. doi:10.1016/j.jallcom.2015.11.148
  • Li X, Zhu W, Lu X, et al. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: mechanism, kinetics and influencing factors. Chem Eng J. 2017;326:87–98. doi:10.1016/j.cej.2017.05.131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.