111
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, cytotoxic evaluation, molecular docking studies and drug-likeness analysis of some novel 2-[(9-ethyl-9H-carbazol-3-yl)imino]thiazoles/thiazolidinones

, &
Pages 272-292 | Received 15 Aug 2023, Accepted 29 Dec 2023, Published online: 11 Jan 2024

References

  • Knolker HJ, Reddy KR. Chemistry and biology of carbazole alkaloids. Chem. Bio. 2008;65:1–430.
  • Kuwahara A, Nakano K, Nozaki K. Double N-arylation of primary amines:  carbazole synthesis from 2,2‘-biphenyldiols. J Org Chem. 2005;70:413–419. doi:10.1021/jo048472+
  • Thevissen K, Marchand A, Chaltin P, et al. Antifungal carbazoles. Curr Med Chem. 2009;16:2205–2211. doi:10.2174/092986709788612701
  • Gluszynska A. Biological potential of carbazole derivatives. Eur J Med Chem. 2015;94:405–426. doi:10.1016/j.ejmech.2015.02.059
  • Caruso A, Voisin-Chiret AS, Lancelot JC, et al. Novel and efficient synthesis of 5,8-dimethyl-9H-carbazol-3-ol via a hydroxydeboronation reaction. Heterocycles. 2007;71:2203–2210. doi:10.3987/COM-07-11113
  • Li J, Grimsdale AC. Carbazole-based polymers for organic photovoltaic devices. Chem Soc Rev. 2010;39:2399–2410. doi:10.1039/b915995a
  • Murat A, Sarac AS. Conducting polymer coated carbon surfaces and biosensor applications. Prog Org Coat. 2009;66:337–358. doi:10.1016/j.porgcoat.2009.08.014
  • Jiang HJ, Jian S, Zhang JL. A review on synthesis of carbazole-based chromophores as organic light-emitting materials. Curr Org Chem. 2012;16:2014–2025. doi:10.2174/138527212803251604
  • Yaqub G, Hussain EA, Rehman MA, et al. Advancements in syntheses of carbazole and its dervatives. Asian J Chem. 2009;21:2485–2520.
  • Joyeeta R, Kumar JA, Dipakranjan M. Recent trends in the synthesis of carbazoles: an update tetrahedron. Tetrahedron. 2012;68:6099–6121.
  • Schmidt AW, Reddy KR, Knölker H-J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem Rev. 2012;112:3193–3328. doi:10.1021/cr200447s
  • Rodriguez SL, Zaballos GE, Gonzalez RE, et al. Thermolysis of 3-(carbazol-3-yl)-2-azidopropenoates. Tetrahedron. 2000;56:4511–4514. doi:10.1016/S0040-4020(00)00290-8
  • Hudkins RL, Johnson NW, Angeles TS, et al. Synthesis and mixed lineage kinase activity of pyrrolocarbazole and isoindolone analogs of (+)K-252a. J Med Chem. 2007;50:433–441. doi:10.1021/jm051074u
  • Prudhomme M. Rebeccamycin analogues as anti-cancer agents. Eur J Med Chem. 2003;38:123–140. doi:10.1016/S0223-5234(03)00011-4
  • Ackermann L, Althammer A. Domino N-H/C-H bond activation: palladium-catalyzed synthesis of annulated heterocycles using dichloro(hetero)arenes. Angew Chem Int Ed. 2007;46:1627–1629. doi:10.1002/anie.200603833
  • Wang G, Sun S, Guo H. Current status of carbazole hybrids as anticancer agents. Eur J Med Chem. 2022;229:113999–114014. doi:10.1016/j.ejmech.2021.113999
  • Kadnor VA. Antimicrobial potential of carbazole derivatives. Croat Chem Acta. 2022;95:39–48. doi:10.5562/cca3899
  • Eseyin1 OA, Edem E, Johnson E, et al. Synthesis and in vitro antidiabetic activity of some alkyl carbazole compounds. Trop J Pharm Res. 2018;17:537–541. doi:10.4314/tjpr.v17i3.21
  • Liu Y-P, Hu S, Liu Y-Y, et al. Anti-inflammatory and antiproliferative prenylated carbazole alkaloids from clausena vestita. Bioorg Chem. 2019;91:103107–103111. doi:10.1016/j.bioorg.2019.103107
  • Saturnin C, Grande F, Aquaro S, et al. Chloro-1,4-dimethyl-9H-carbazole derivatives displaying anti-HIV activity. Molecules. 2018;23:286–293. doi:10.3390/molecules23020286
  • Puhalla S, Brufsky A. Ixabepilone: a new chemotherapeutic option for refractory metastatic breast cancer. Biologics. 2008;2:505–515.
  • Koehnke J, Bent AF, Houssen WE, et al. The structural biology of patellamide biosynthesis. Curr Opin Struct Biol. 2014;29:112–121. doi:10.1016/j.sbi.2014.10.006
  • Forli S. Epothilones: from discovery to clinical trials. Curr Top Med Chem. 2014;14:2312–2321. doi:10.2174/1568026614666141130095855
  • Gouveia FL, Oliveira RMB, Oliveira TB, et al. Synthesis, antimicrobial and cytotoxic activities of some 5-arylidene-4-thioxo-thiazolidine-2-ones. Eur J Med Chem. 2009;44:2038–2043. doi:10.1016/j.ejmech.2008.10.006
  • Tratrat C, Petrou A, Geronikaki A, et al. Thiazolidin-4-Ones as potential antimicrobial agents: experimental and In silico evaluation. Molecules. 2022;27:1930–1954. doi:10.3390/molecules27061930
  • Jackson JR, Patrick DR, Dar MM, et al. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer. 2007;7:107–117. doi:10.1038/nrc2049
  • Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res. 2006;69:273–294. doi:10.1016/j.eplepsyres.2006.02.004
  • Troutman HD, Long LM. The synthesis of 2, 3-disubstituted-4-thiazolidones1. J Am Chem Soc. 1948;70:3436–3439. doi:10.1021/ja01190a064
  • Kumar A, Rajput CS, Bhati SK. Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent. Bioorg Med Chem. 2007;15:3089–3096. doi:10.1016/j.bmc.2007.01.042
  • Pink R, Hudson A, Mouriès M-A, et al. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005;4:727–740. doi:10.1038/nrd1824
  • Balzarini J, Orzeszko-Krzesińska B, Maurin JK, et al. Synthesis and anti-HIV studies of 2-and 3-adamantyl-substituted thiazolidin-4-ones. Eur J Med Chem. 2009;44:303–311. doi:10.1016/j.ejmech.2008.02.039
  • Alexiou P, Pegklidou K, Chatzopoulou M, et al. Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem. 2009;16:734–752. doi:10.2174/092986709787458362
  • Bhandari SV, Bothara KG, Patil AA, et al. Design, synthesis and pharmacological screening of novel antihypertensive agents using hybrid approach. Bioorg Med Chem. 2009;17:390–400. doi:10.1016/j.bmc.2008.10.032
  • Nampurath GK, Mathew SP, Khanna V, et al. Assessment of hypolipidaemic activity of three thiazolidin-4-ones in mice given high-fat diet and fructose. Chem Biol Interact. 2008;171:363–368. doi:10.1016/j.cbi.2007.10.006
  • Shirole GD, Pandhare GR, Gadhave AG, et al. Synthesis and biological assessment of carbazole linked pyrazole schiff bases and diarylthiourea derivatives. Croat Chem Acta. 2020;93:139–146. doi:10.5562/cca3700
  • Mahmoud AM, Al-Abd AM, Lightfoot DA, et al. Anticancer characteristics of mevinolin against three different solid tumor cell lines was not solely p53-dependent. J. Enzyme Inhib Med Chem. 2012;27:673–679. doi:10.3109/14756366.2011.607446
  • Abdullah SE, Perez-Soler R. Mechanisms of resistance to vascular endothelial growth factor blockade. Cancer. 2012;118:3455–3467. doi:10.1002/cncr.26540
  • Modi SJ, Kulkarni VM. Vascular endothelial growth factor receptor (VEGFR-2)-KDR inhibitors: medicinal chemistry perspective. Med Drug Discov. 2019;2:100009. doi:10.1016/j.medidd.2019.100009
  • Cee VJ, Cheng AC, Romero K, et al. Pyridyl-pyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of tie-2 kinase. Bioorg Med Chem Lett. 2009;19:424–427. doi:10.1016/j.bmcl.2008.11.056
  • Saleh NM, El-Gaby MSA, El-Adl K, et al. Design, green synthesis, molecular docking and anticancer evaluations of diazepam bearing sulfonamide moieties as VEGFR-2 inhibitors. Bioorg Chem. 2020;104:104350–104366. doi:10.1016/j.bioorg.2020.104350
  • SwissADME. web site address: http://www.swissadme.ch.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717–42729. doi:10.1038/srep42717
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. the article was originally published in advanced drug delivery reviews 23 (1997) 3–25. 1. Adv Drug Delivery Rev. 2001;46:3–26. doi:10.1016/S0169-409X(00)00129-0
  • Gfeller D, Grosdidier A, Wirth M, et al. Swisstargetprediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42:W32–W38. doi:10.1093/nar/gku293
  • Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Huey R, Morris GM, Olson AJ, et al. A semiempirical free energy force field with charge-based desolvation. J Comput Chem. 2007;28:1145–1152. doi:10.1002/jcc.20634
  • Morris GM, Huey R, Lindstrom W, et al. Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791. doi:10.1002/jcc.21256
  • Trott O, Olson AJ. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461. doi:10.1002/jcc.21334
  • Eberhardt J, Santos-Martins D, Tillack AF, et al. Autodock vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61:3891–3898. doi:10.1021/acs.jcim.1c00203
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera—A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi:10.1002/jcc.20084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.