69
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and enhanced photocatalytic properties of Cu31S16/Cu9S5 heterojunction composite

, , , &
Pages 239-249 | Received 11 May 2023, Accepted 05 Feb 2024, Published online: 12 Feb 2024

References

  • Mani R, Vivekanandan K, Subiramaniyam NP. Photocatalytic activity of different organic dyes by using pure and Fe doped SnO2 nanopowders catalyst under UV light irradiation. J Mater Sci-Mater El. 2017;28:13846–13852. doi:10.1007/s10854-017-7231-9
  • Liu L, Li M, Chen F, et al. Recent advances on single-atom catalysts for CO2 reduction. Small Struct. 2022;4(3):1–22.
  • Lee GJ, Anandan S, Masten SJ, et al. Sonochemical synthesis of hollow copper doped zinc sulfide nanostructures: optical and catalytic properties for visible light assisted photosplitting of water. Ind Eng Chem Res. 2014;53(21):8766–8772. doi:10.1021/ie500663n
  • Wang J, Hu C, Zhang Y, et al. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution. Chinese J Catal. 2022;43(5):1277–1285. doi:10.1016/S1872-2067(21)63976-1
  • Chen F, Zhang Y, Huang H. Layered photocatalytic nanomaterials for environmental applications. Chin Chem Lett. 2023;34(3):53–67.
  • Chen JS, Li CM, Zhou WW, et al. One-pot formation of SnO2 hollow nanospheres and alpha-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale. 2009;1:280–285. doi:10.1039/b9nr00102f
  • Xiong WL, Wang Y, Yuan CL, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater. 2006;18:2325–2329. doi:10.1002/adma.200501899
  • Yu JG, Yu XX. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol. 2008;42:4902–4907. doi:10.1021/es800036n
  • Reijnen L, Meester B, Goossens A, et al. Atomic layer deposition of CuxS for solar energy conversion. Chem Vap Deposition. 2003;9:15–20. doi:10.1002/cvde.200290001
  • Sagade AA, Sharma R. Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. Sens Actuators B. 2008;133:135–143. doi:10.1016/j.snb.2008.02.015
  • Šetkus A, Galdikas A, Mironas A, et al. Properties of CuxS thin film based structures: influence on the sensitivity to ammonia at room temperatures. Thin Solid Films. 2001;391:275–281. doi:10.1016/S0040-6090(01)00995-6
  • Wang K, Huang Y, Zhu YD, et al. Cubic Cu2O/Cu2S particles with a unique truncated edge structure anchoring on reduced graphene oxide as an enhanced anode material for sodium-ion batteries. ChemElectroChem. 2018;5:630–636. doi:10.1002/celc.201701162
  • Zhang WX, Chen ZX, Yang ZH. An inward replacement/etching route to synthesize double-walled Cu7S4 nanoboxes and their enhanced performances in ammonia gas sensing. Phys Chem Chem Phys. 2009;11:6263–6268. doi:10.1039/b821452b
  • Zhao YX, Pan HC, Lou YB, et al. Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J Am Chem Soc. 2009;131:4253–4261. doi:10.1021/ja805655b
  • Sithole RK, Machogo LFE, Moloto MJ, et al. One-step synthesis of Cu3N, Cu2S and Cu9S5 and photocatalytic degradation of methyl orange and methylene blue. J Photochem. 2020;397:112577–112587.
  • Yan HJ, Wang WZ, Xu HL. A micro-interface route to CuS superstructure composed of intersectional nanoplates. J Cryst Growth. 2008;310:2640–2643. doi:10.1016/j.jcrysgro.2008.01.031
  • Wu CY, Yu SH, Chen SF, et al. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J Mater. 2006;16:3326–3331.
  • He YJ, Yu XY, Zhao XL. Synthesis of hollow CuS nanostructured microspheres with novel surface morphologies. Mater Lett. 2007;61:3014–3016. doi:10.1016/j.matlet.2006.10.065
  • Thongtem T, Phuruangrat A, Thongtem S. Formation of CuS with flower-like, hollow spherical, and tubular structures using the solvothermal-microwave process. Curr Appl Phys. 2009;9:195–200. doi:10.1016/j.cap.2008.01.011
  • Roy P, Srivastava SK. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Mater Lett. 2007;61:1693–1697. doi:10.1016/j.matlet.2006.07.101
  • Liu XQ, Li Z, Li F, et al. Facile synthesis of Cu31S16 and their photocatalytic property. Appl Surf Sci. 2012;258:6064–6068. doi:10.1016/j.apsusc.2012.02.142
  • Zhang HD, Xuan Y, Cheng P, et al. Nanotwinned structure-dependent photocatalytic performances of the multipod frameworks of Cu7S4 hollow microcages. Front Chem. 2020;8:15–23. doi:10.3389/fchem.2020.00015
  • Ravele MP, Oyewo OA, Ramaila S, et al. Photocatalytic degradation of tetracycline in aqueous solution using copper sulfide nanoparticles. Catalysts. 2021;11(10):1238. doi:10.3390/catal11101238
  • Liu X, Li Z, Zhang Q, et al. Controllable synthesis and enhanced photocatalytic properties of Cu2O/Cu31S16 composites. Mater Res Bull. 2012;47(9):2631–2637. doi:10.1016/j.materresbull.2012.04.071
  • Khatter J, Chauhan RP. Visible light-motivated photo-catalytic activity of CdS–Cu9S5 heterostructure for degradation of methylene blue. Appl Nanosci. 2022;12(5):1683–1696. doi:10.1007/s13204-022-02357-1
  • Guo X, Liu S, Wang W, et al. Enhanced photocatalytic hydrogen production activity of Janus Cu1.94S-ZnS spherical nanoheterostructures. J Colloid Interface Sci. 2021;600:838–846. doi:10.1016/j.jcis.2021.05.073
  • Zhang Z, Sun J, Mo S, et al. Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection. Chem Eng J. 2022;431:134287. doi:10.1016/j.cej.2021.134287
  • Luminita I, Ionut P, Alexandru E, et al. Copper sulfide (CuxS) thin films as possible p-type absorbers in 3D solar cells. Energy Procedia. 2010;2:71–78.
  • Pan B, Wu Y, Rhimi B, et al. Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. J Energy Chem. 2021;57:1–9. doi:10.1016/j.jechem.2020.08.024
  • Pan B, Liao M, Zhao YL, et al. Visible light activation of ferrate (VI) by oxygen doped ZnIn2S4/black phosphorus nanolayered heterostructure: Accelerated oxidation of trimethoprim. J Hazard Mater. 2023;460:132413. doi:10.1016/j.jhazmat.2023.132413
  • Tan HL, Abdi FF, Ng YH. Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem Soc Rev. 2019;48(5):1255–1271. doi:10.1039/C8CS00882E
  • Kuang PY, Zheng XJ, Lin J, et al. Facile construction of dual p-n junctions in CdS/Cu(2)O/ZnO photoanode with enhanced charge carrier separation and transfer ability. ACS Omega. 2017;2(3):852–863. doi:10.1021/acsomega.6b00507
  • Mulder BJ. Optical properties and energy band scheme of cuprous sulphides with ordered and disordered copper ions. Phys Status Solidi A. 1973;18(2):633–638. doi:10.1002/pssa.2210180225
  • Mulder BJ. Optical properties of crystals of cuprous sulphides (chalcosite, djurleite, Cu1.9S, and digenite). Phys Status Solidi A. 1972;13(1):79–88. doi:10.1002/pssa.2210130107
  • Xu M, Wang M, Ye T, et al. Cube-in-cube hollow Cu9S5 nanostructures with enhanced photocatalytic activities in solar H2 evolution. Chem Eur J. 2014;20(42):13576–13582. doi:10.1002/chem.201403683

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.