104
Views
0
CrossRef citations to date
0
Altmetric
Articles

Using convolutional neural networks to identify illegal roofs from unmanned aerial vehicle images

Pages 390-410 | Received 07 Apr 2023, Accepted 01 Aug 2023, Published online: 07 Aug 2023

References

  • Ali, R., & Cha, Y. J. (2022). Attention-based generative adversarial network with internal damage segmentation using thermography. Automation in Construction, 141, 104412. doi:10.1016/j.autcon.2022.104412
  • Ali, R., Kang, D., Suh, G., & Cha, Y. J. (2021). Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures. Automation in Construction, 130, 103831. doi:10.1016/j.autcon.2021.103831
  • Alidoost, F., & Arefi, H. (2016). Knowledge based 3D building model recognition using convolutional neural networks from lidar and areal imageries. In L. Halounova, K. Schindler, A. Limpouch, T. Pajdla, V. Šafář, H. Mayer, … U. Stilla (Eds.), The international archives of the photogrammetry, remote sensing and spatial information sciences (pp. 833–840). Göttingen: Copernicus Publications.
  • Axelsson, M., Soderman, U., Berg, A., & Lithen, T. (2018). Roof type classification using deep convolutional neural networks on low resolution photogrammetric point clouds from aerial imagery. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1293–1297). Calgary, Canada.
  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828. doi:10.1109/TPAMI.2013.50
  • Bittner, K., Körner, M., & Reinartz, P. (2019). DSM building shape refinement from combined remote sensing images based on WNET-CGANS. In 2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 783–786). Yokohama, Japan.
  • Castagno, J., & Atkins, E. (2018). Roof shape classification from LiDAR and satellite image data fusion using supervised learning. Sensors, 18(11), 3960. doi:10.3390/s18113960
  • Cha, Y. J., Choi, W., & Büyüköztürk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361–378. doi:10.1111/mice.12263
  • Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., & Büyüköztürk, O. (2018). Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Computer-Aided Civil and Infrastructure Engineering, 33(9), 731–747. doi:10.1111/mice.12334
  • Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232–6251. doi:10.1109/TGRS.2016.2584107
  • Choi, W., & Cha, Y. J. (2019). SDDNet: Real-time crack segmentation. IEEE Transactions on Industrial Electronics, 67(9), 8016–8025. doi:10.1109/TIE.2019.2945265
  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92(6), 79–97. doi:10.1016/j.isprsjprs.2014.02.013
  • Dong, L., & Shan, J. (2013). A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 84(2013), 85–99. doi:10.1016/j.isprsjprs.2013.06.011
  • Fruh, C., & Zakhor, A. (2003). Constructing 3D city models by merging aerial and ground views. IEEE Computer Graphics and Applications, 23(6), 52–61. doi:10.1109/MCG.2003.1242382
  • Gerke, M., & Xiao, J. (2014). Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification. ISPRS Journal of Photogrammetry and Remote Sensing, 87(2014), 78–92. doi:10.1016/j.isprsjprs.2013.10.011
  • Getzin, S., Nuske, R. S., & Wiegand, K. (2014). Using unmanned aerial vehicles (UAV) to quantify spatial gap patterns in forests. Remote Sensing, 6(8), 6988–7004. doi:10.3390/rs6086988
  • Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing. Upper Saddle River, New Jersey: Prentice Hall.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, Massachusetts: MIT Press.
  • Kang, B., Kim, J. G., Kim, D., & Kang, D. H. (2019). Flow estimation using drone optical imagery with non-uniform flow modeling in a controlled experimental channel. KSCE Journal of Civil Engineering, 23(4), 1891–1898. doi:10.1007/s12205-019-1438-7
  • Kang, D. H., & Cha, Y. J. (2018). Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Computer-Aided Civil and Infrastructure Engineering, 33(10), 885–902. doi:10.1111/mice.12375
  • Kang, D. H., & Cha, Y. J. (2022). Efficient attention-based deep encoder and decoder for automatic crack segmentation. Structural Health Monitoring, 21(5), 2190–2205. doi:10.1177/14759217211053776
  • Kashani, A. G., & Graettinger, A. J. (2015). Cluster-based roof covering damage detection in Ground-based lidar data. Automation in Construction, 58(2015), 19–27. doi:10.1016/j.autcon.2015.07.007
  • Khaloo, A., Lattanzi, D., Cunningham, K., Dell’Andrea, R., & Riley, M. (2018). Unmanned aerial vehicle inspection of the placer river trail bridge through image-based 3D modelling. Structure and Infrastructure Engineering, 14(1), 124–136. doi:10.1080/15732479.2017.1330891
  • Lee, S. H., Woo, S. H., Ryu, J. R., & Choo, S. Y. (2019). Automated building occupancy authorization using BIM and UAV-based spatial information: Photogrammetric reverse engineering. Journal of Asian Architecture and Building Engineering, 18(2), 154–161. doi:10.1080/13467581.2019.1631172
  • Leichtle, T., Geiß, C., Wurm, M., Lakes, T., & Taubenböck, H. (2017). Unsupervised change detection in VHR remote sensing imagery – an object-based clustering approach in a dynamic urban environment. International Journal of Applied Earth Observation and Geoinformation, 54(2017), 15–27. doi:10.1016/j.jag.2016.08.010
  • Li, J., Huang, X., Tu, L., Zhang, T., & Wang, L. (2022). A review of building detection from very high resolution optical remote sensing images. GIScience & Remote Sensing, 59(1), 1199–1225. doi:10.1080/15481603.2022.2101727
  • Li, S., Zhao, X., & Zhou, G. (2019). Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network. Computer-Aided Civil and Infrastructure Engineering, 34(7), 616–634. doi:10.1111/mice.12433
  • Lillesand, T. M., & Kiefer, R. W. (2000). Remote sensing and image interpretation. New York: John Wiley and Sons Press.
  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Lecture notes in computer science (pp. 21–37). Cham: Springer.
  • Liu, W., Yang, M., Xie, M., Guo, Z., Li, E., Zhang, L., … Wang, D. (2019). Accurate building extraction from fused DSM and UAV images using a chain fully convolutional neural network. Remote Sensing, 11(24), 2912. doi:10.3390/rs11242912
  • Liu, Y., Sun, Y., Tao, S., Wang, M., Shen, Q., & Huang, J. (2021). Discovering potential illegal construction within building roofs from UAV images using semantic segmentation and object-based change detection. Photogrammetric Engineering & Remote Sensing, 87(4), 263–271. doi:10.14358/PERS.87.4.263
  • Liuzzi, M., Aravena Pelizari, P., Geiß, C., Masi, A., Tramutoli, V., & Taubenböck, H. (2019). A transferable remote sensing approach to classify building structural types for seismic risk analyses: The case of Val d’Agri area (Italy). Bulletin of Earthquake Engineering, 17(8), 4825–4853. doi:10.1007/s10518-019-00648-7
  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. doi:10.1080/01431160600746456
  • Martinez, C., Sampedro, C., Chauhan, A., Collumeau, J. F., & Campoy, P. (2018). The Power Line Inspection Software (PoLIS): A versatile system for automating power line inspection. Engineering Applications of Artificial Intelligence, 71(2018), 293–314. doi:10.1016/j.engappai.2018.02.008
  • Merwe, D. V., & Price, K. P. (2015). Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems. Toxins, 7(4), 1065–1078. doi:10.3390/toxins7041065
  • Mohajeri, N., Assouline, D., Guibouda, B., Bill, A., Gudmundssonc, A., & Scartezzini, J. L. (2018). A city-scale roof shape classification using machine learning for solar energy applications. Renewable Energy, 121(2018), 81–93. doi:10.1016/j.renene.2017.12.096
  • Notarangelo, N. M., Mazzariello, A., Albano, R., & Sole, A. (2021). Comparing three machine learning techniques for building extraction from a digital surface model. Applied Sciences, 11(13), 6072. doi:10.3390/app11136072
  • Ps, P., & Aithal, B. H. (2022). Building footprint extraction from very high-resolution satellite images using deep learning. Journal of Spatial Science, 1–17. doi:10.1080/14498596.2022.2037473
  • Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
  • Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems (pp. 91–99). La Jolla, CA: Neural Information Processing Systems Foundation, Inc.
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61(2015), 85–117. doi:10.1016/j.neunet.2014.09.003
  • Schwarzrock, J., Zacarias, I., Bazzan, A. L. C., de Araujo Fernandes, R. Q., Moreira, L. H., & de Freitas, E. P. (2018). Solving task allocation problem in multi unmanned aerial vehicles systems using Swarm intelligence. Engineering Applications of Artificial Intelligence, 72(2018), 10–20. doi:10.1016/j.engappai.2018.03.008
  • Sharma, A., Liu, X., Yang, X., & Shi, D. (2017). A patch-based convolutional neural network for remote sensing image classification. Neural Networks, 95(2017), 19–28. doi:10.1016/j.neunet.2017.07.017
  • Spencer Jr, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering, 5(2019), 199–222. doi:10.1016/j.eng.2018.11.030
  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958.
  • Unger, J., Reich, M., & Heipke, C. (2014). UAV-based photogrammetry: Monitoring of a building zone. In F. Remondino & F. Menna (Eds.), International archives of the photogrammetry, remote sensing and spatial information sciences (pp. 601–606). Göttingen: Copernicus Publications.
  • Varol, B., Yılmaz, E. Ö., Maktav, D., Bayburt, S., & Gürdal, S. (2019). Detection of illegal constructions in urban cities: Comparing LIDAR data and stereo KOMPSAT-3 images with development plans. European Journal of Remote Sensing, 52(1), 335–344. doi:10.1080/22797254.2019.1604082
  • Vetrivel, A., Gerke, M., Kerle, N., & Vosselman, G. (2015). Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS Journal of Photogrammetry and Remote Sensing, 105(2015), 61–78. doi:10.1016/j.isprsjprs.2015.03.016
  • Wang, Y., Li, S., Teng, F., Lin, Y., Wang, M., & Cai, H. (2022). Improved mask R-CNN for rural building roof type recognition from uav high-resolution images: A case study in hunan province, China. Remote Sensing, 14(2), 265. doi:10.3390/rs14020265
  • Waqas, A., Kang, D., & Cha, Y. J. (2023). Deep learning-based obstacle-avoiding autonomous UAVs with fiducial marker-based localization for structural health monitoring. Structural Health Monitoring, 14759217231177314. doi:10.1177/14759217231177314
  • Xiong, C., Li, Q., & Lu, X. (2020). Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network. Automation in Construction, 109(2020), 102994. doi:10.1016/j.autcon.2019.102994
  • Xu, S., Vosselman, G., & Oude Elberink, S. (2015). Detection and classification of changes in buildings from airborne laser scanning data. Remote Sensing, 7(12), 17051–17076. doi:10.3390/rs71215867
  • Xu, Y., Wei, S., Bao, Y., & Li, H. (2019). Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network. Structural Control and Health Monitoring, 26(3), e2313. doi:10.1002/stc.2313
  • Yao, H., Qin, R., & Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications—A review. Remote Sensing, 11(12), 1443. doi:10.3390/rs11121443
  • Yeum, C. M., Dyke, S. J., & Ramirez, J. (2018). Visual data classification in post-event building reconnaissance. Engineering Structures, 155(2018), 16–24. doi:10.1016/j.engstruct.2017.10.057
  • Zhang, Q., Qin, R., Huang, X., Fang, Y., & Liu, L. (2015). Classification of ultra-high resolution orthophotos combined with DSM using a dual morphological top hat profile. Remote Sensing, 7(12), 16422–16440. doi:10.3390/rs71215840
  • Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014). Learning deep features for scene recognition using places database. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (pp. 487–495). Cambridge, Massachusetts: The MIT Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.