266
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Multiple rogue wave solutions of (2+1)-dimensional YTSF equation via Hirota bilinear method

&
Pages 94-110 | Received 07 Nov 2020, Accepted 01 Mar 2021, Published online: 06 Apr 2021

References

  • Xu GQ, Wazwaz AM. Characteristics of integrability, bidirectional solitons and localized solutions for a (3+1)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 2019;96:1989–2000.
  • Chen HH, Li YC, Liu CS. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys Scripta. 1979;20(3–4):490–492.
  • Li BQ, Ma YL. Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl Math Comput. 2020;386:125469.
  • Bashar MH, Islam SMR. Exact solutions to the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation by using modified simple equation and improve F-expansion methods. Physics Open. 2020;5:100027.
  • Khan K, Akbar MA, Islam SMR. Exact solutions for (1+1)-dimensional nonlinear dispersive modified Benjamin–Bona–Mahony equation and coupled Klein–Gordon equations. Springer Plus. 2014;3:724.
  • Islam SMR, Khan K, Akbar MA. Exact solution of unsteady Korteweg–de Vries and time regularized long wave equations. Springer Plus. 2015;4:124.
  • Islam SMR, Khan K, Al woadud KMA. Analytical studies on the Benney-Luke equation in mathematical physics. Waves Random Complex Media. 2018;28:300–309.
  • Hirota R, Satsuma J. Soliton solution of a coupled KdV equation. Phys Lett A. 1981;85:407–408.
  • Kudryashov NA. Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chinese J Phys. 2020;66:401–405.
  • Lü X, Ma WX, Yu J, et al. Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun Nonlinear Sci Numer Simul. 2016;31:40–46.
  • Ma HC, Cheng QX, Deng AP. Soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Commun Theor Phys. 2020;72:095001.
  • Lan ZZ, Gao B, Du MJ. Bilinear forms and dark soliton behaviors for a higher-order variable-coefficient nonlinear Schrodinger equation in an inhomogeneous alpha helical protein. Waves Random Complex Media. 2019;29:63–76.
  • Tsoy EN, Suyunov LA. Solitons of the generalized nonlinear Schrodinger equation. Phys D Nonlinear Phenom. 2020;414:132659.
  • Lan ZZ. Rogue wave solutions for a higher-order nonlinear Schrodinger equation in an optical fiber. Appl Math Lett. 2020;107:106382.
  • Feng YY, Bilige SD, Wang XM. Diverse exact analytical solutions and novel interaction solutions for the (2+1)-dimensional Ito equation. Phys Scripta. 2020;95:095201.
  • Lü JQ, Bilige SD, Chaolu TM. The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order kdv equation. Nonlinear Dyn. 2018;91:1669–1676.
  • Fei JX, Cao WP. Explicit soliton-cnoidal wave interaction solutions for the (2+1)-dimensional negative-order breaking soliton equation. Waves Random Complex Media. 2020;30:54–64.
  • Yue YF, Huang LL, Chen Y. N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation. Comput Math Appl Internat J. 2018;75:2538–2548.
  • Choi JH, Kim H, Sakthivel R. Periodic and solitary wave solutions of some important physical models with variable coefficients. Waves Random Complex Media. DOI:10.1080/17455030.2019.1633029
  • Guimaraes PV, Ardhuin F, Bergamasco F, et al. A data set of sea surface stereo images to resolve space-time wave fields. Sci Data. 2020;7:145.
  • Liu JG, Zhu WH. Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation. Chinese J Phys. 2020;67:492–500.
  • Pal R, Loomba S, Kumar CN. Controllable excitations of rogue waves and breathers in an inhomogeneous erbium doped fiber system. Opt Commun. 2020;474:126153.
  • Li BQ, Ma YL. N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics. Nonlinear Dyn. 2020;101:2449-–2461.
  • Manikandan K, Priya NV, Senthilvelan M, et al. Higher-order matter rogue waves and their deformations in two-component Bose-Einstein condensate. Waves Random Complex Media.  DOI:10.1080/17455030.2020.1804645
  • Li ZY, Li FF, Li HJ. Exciting rogue waves, breathers, and solitons in coherent atomic media. Commun Theor Phys. 2020;72:075003.
  • Wen XY, Wang HT. Breathing-soliton and singular rogue wave solutions for a discrete nonlocal coupled Ablowitz-adik equation of reverse-space type. Appl Math Lett. 2021;111:106683.
  • Wang L, Yan ZY. Rogue wave formation and interactions in the defocusing nonlinear Schrodinger equation with external potentials. Appl Math Lett. 2021;111:106670.
  • Ji T, Zhai YY. Soliton, breather and rogue wave solutions of the coupled Gerdjikov-Ivanov equation via Darboux transformation. Nonlinear Dyn. 2020;101:619–631.
  • Zhao ZL, He LC, Gao YB. Rogue wave and multiple lump solutions of the (2+1)-dimensional Benjamin-Ono equation in fluid mechanics. Complexity. 2019;2019:8249635.
  • Xu GQ. Painleve analysis, lump-kink solutions and localized excitation solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Appl Math Lett. 2019;97:81–87.
  • Dai ZD, Liu ZJ, Li DL. Exact periodic solitary-wave solution for KdV equation. Chinese Phys Lett. 2008;25:1531–1533.
  • Xu ZH, Chen HL, Jiang MR, et al. Resonance and deflection of multi-soliton to the (2+1)-dimensional KadomtsevPetviashvili equation. Nonlinear Dyn. 2014;78:461–466.
  • Peng YZ. New types of localized coherent structures in the Bogoyavlenskii-Schiff equation. Int J Theor Phys. 2006;45:1779–1783.
  • Jadaun V, Singh NR. Soliton solutions of generalized (3+1)-dimensional Yu–Toda–Sasa–Fukuyama equation using Lie symmetry analysis. Anal Math Phys. 2020;10:42.
  • Zhao ZL, He LC. Multiple lump solutions of the (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Appl Math Lett. 2019;95:114–121.
  • Lü LB, Shang YD. Abundant new non-travelling wave solutions for the (3+1)-dimensional potential-YTSF equation. Appl Math Lett. 2020;107:106456.
  • Pu ZQ, Pan ZG. Cross soliton and breather soliton for the (3+1)-dimensional Yu–Toda–Sasa–Fukuyama equation. Adv Differ Equ. 2019;2019:223.
  • Chen SJ, Yin YH, Ma WX, et al. Abundant exact solutions and interaction phenomena of the (2+1)-dimensional YTSF equation. Anal Math Phys. 2019;9:2329–2344.
  • Wang M, Tian B, Qu QX, et al. Lump, lumpoff and rogue waves for a (2+1)-dimensional reduced Yu–Toda–Sasa–Fukuyama equation in a lattice or liquid. Eur Phys J Plus. 2019;134:578.
  • Zha QL. A symbolic computation approach to constructing rogue waves with a controllable center in nonlinear systems. Comput Math Appl. 2018;75(9):3331–3342.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.