158
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Doppler characteristics of electromagnetic echoes from sinusoidal water waves illuminated by plane wave/Gaussian beam

, , &
Pages 146-161 | Received 05 Sep 2019, Accepted 09 Mar 2021, Published online: 25 Mar 2021

References

  • Chapron B, Collard F, Ardhuin F. Direct measurements of ocean surface velocity from space: interpretation and validation. J Geophys Res. 2005;110:C07008.
  • Johannessen JA, Kudryavtsev V, Akimov D, et al. On radar imaging of current features: Part 2: mesoscale eddy and current front detection. J Geophys Res 2005;110:C07017.
  • Kudryavtsev V, Akimov D, Johannessen JA, et al. On radar imaging of current features. Part 1: model and comparison with observations. J Geophys Res. 2005;110:C07016.
  • Karaev V, Kanevsky M, Meshkov E. The effect of sea surface slicks on the Doppler spectrum width of a backscattered microwave signal. Sensors. 2008;8:3780–3801.
  • Mouche AA, Collard F, Chapron B, et al. On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE Trans Geosci Remote Sens. 2012;50(7):2901–2909.
  • Barrick DE. Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci. 1977;12(2):415–424.
  • Johnson JT, Burkholder RJ, Toporkov JV, et al. A numerical study of the retrieval of sea surface height profiles from low grazing angle radar data. IEEE Trans Geosci Remote Sens. 2009;47(3):1641–1650.
  • Hwang PA, Sletten MA, Toporkov JV. A note on Doppler processing of coherent radar backscatter from the water surface: with application to ocean surface wave measurements. J Geophys Res Atmospheres. 2010;115:C03026.
  • Chae CS, Johnson JT. A study of sea surface range-resolved Doppler spectra using numerically simulated low-grazing-angle backscatter data. IEEE Trans Geosci Remote Sens. 2013;51:3452–3460.
  • Wang YH, Li HM, Zhang YM, et al. The measurement of sea surface profile with X-band coherent marine radar. Acta Oceanol Sin. 2015;34(9):65–70.
  • Crombie DD. Doppler spectrum of sea echo at 13.56 Mc./s. Nature. 1955;175:681–682.
  • Lipa BJ, Barrick DE. Extraction of sea state from HF radar sea echo: mathmatical theory and modeling. Radio Sci. 1986;21(1):81–100.
  • Bass F, Fuks I, Kalmykov A, et al. Very high frequency radiowave scattering by a disturbed sea surface, Part II: scattering from an actual sea surface. IEEE Trans Antennas Propag. 1968;16(5):560–568.
  • Wright JW, Keller WC. Doppler spectra in microwave scattering from wind waves. Phys Fluids. 1971;14:466–474.
  • Soriano G, Joelson M, Saillard M. Doppler spectra from a two-dimensional ocean surface at L-band. IEEE Trans Geosci Remote Sens. 2006;44:2430–2437.
  • Fuks IM, Voronovich AG. Radar backscattering from Gerstner's sea surface wave. Wave Random Media. 2002;12(3):321–339.
  • Toporkov JV, Brown GS. Numerical simulations of scattering from time-varying, randomly rough surfaces. IEEE Trans Geosci Remote Sens. 2000;38:1616–1625.
  • Johnson JT, Toporkov JV, Brown GS. A numerical study of backscattering from time-evolving sea surfaces: comparison of hydrodynamic models. IEEE Trans Geosci Remote Sens. 2001;39:2411–2420.
  • Hayslip AR, Johnson JT, Baker GR. Further numerical studies of backscattering from time-evolving nonlinear sea surfaces. IEEE Trans Geosci Remote Sens. 2003;41(10):2287–2293.
  • Saillard M, Forget P, Soriano G, et al. Sea surface probing with L-band Doppler radar: experiment and theory. C. R. Physique. 2005;6:675–682.
  • Zavorotny VU, Voronovich AG. Two-scale model and ocean radar Doppler spectra at moderate- and low-grazing angles. IEEE Trans Antennas Propag. 1998;46(1):84–92.
  • Romeiser R, Thompson DR. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents. IEEE Trans Geosci Remote Sens. 2000;38(1):446–458.
  • Wang YH, Zhang YM, He MX, et al. Doppler spectra of microwave scattering fields from nonlinear oceanic surface at moderate- and low-grazing angles. IEEE Trans Geosci Remote Sens. 2012;50:1104–1116.
  • Wang YH, Zhang YM, Guo LX. Microwave Doppler spectra of sea echoes at high incidence angles: influences of large-scale waves. Progr Electromagn Res B. 2013;48:99–113.
  • Wang YH, Zhang YM, Li HM, et al. Doppler spectrum of microwave SAR signals from two-dimensional time-varying sea surface. J Electromagn Waves Appl. 2016;30(10):1265–1276.
  • Wen BY, Li K. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave. Sci Rep. 2016;6:31588.
  • Thorsos EI. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J Acoust Soc A. 1988;83(1):78–92.
  • Soriano G, Guérin CA, Saillard M. Scattering by two-dimensional rough surfaces: comparison between the method of moments, Kirchhoff and small-slope approximations. Waves Random Media. 2002;12(1):63–83.
  • Ye H, Jin YQ. Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface. IEEE Trans Antennas Propag. 2005;53(3):1234–1237.
  • Franceschetti G, Iodice A, Riccio D. Scattering from dielectric random fractal surfaces via method of moments. IEEE Trans Geosci Remote Sens. 2000;38:1644–1655.
  • Voronovich A, Zavorotny V. Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves. Wave Random Media. 2001;11:247–269.
  • Zheng H, Khenchaf A, Wang Y, et al. Sea surface monostatic and bistatic EM scattering using SSA-1 and UAVSAR data: numerical evaluation and comparison using different sea spectra. Remote Sens. 2018;10:1084.
  • Voronovich AG. Chapter 6 “nonclassical” approaches to wave scattering at rough surfaces. In: Brekhovskikh LM, Felsen LB, Haus HA, Lotsch HKY, editor. Wave scattering from rough surfaces, 2nd ed. Berlin/Heidelberg, Germany: Springer Science & Business Media; 1999. p. 154–196. ISBN 3642599362.
  • Thorsos EI. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J Acoust Soc Am. 1988;83:78–92.
  • Braunisch H, Zhang Y, Ao CO, et al. Tapered wave with dominant polarization state for all angles of incidence. IEEE Trans Antennas Propag. 2000;48(7):1086–1096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.