306
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of microwave heating for hyperthermia cancer treatment

, ORCID Icon, &
Pages 211-225 | Received 21 Aug 2020, Accepted 15 Mar 2021, Published online: 29 Mar 2021

References

  • Schwan H. Classical theory of microwave interactions with biological systems The Physical Basis of Electromagnetic Interactions with Biological Systems: Proceedings of a Workshop Held at the University of Maryland, College Park, Maryland, June 15–17, 1977 vol. 78 (Department of Health, Education, and Welfare, Public Health Service) p. 91. 1978
  • Kenkre V. Theory of microwave interactions with ceramic materials. Ceramic Trans. 1991;21:69–80.
  • Kolundžija BM, Djordjević AR. Electromagnetic modeling of composite metallic and dielectric structures. London: Artech House; 2002.
  • Shokri B, Niknam A. Nonlinear structure of the electromagnetic waves in underdense plasmas. Phys Plasmas. 2006;13:113110.
  • Niknam A, Shokri B. Density steepening formation in the interaction of microwave field with a plasma. Phys Plasmas. 2007;14:052104.
  • Valentini E, Curcio G, Moroni F, et al. Neurophysiological effects of mobile phone electromagnetic fields on humans: a comprehensive review. Bioelectromagnetics. 2007;28:415–432.
  • Wang Y, Tang J, Rasco B, et al. Dielectric properties of salmon fillets as a function of temperature and composition. J Food Eng. 2008;87:236–246.
  • Jazi B, Abdoli-Arani A, Rahmani Z, et al. Propagation of electromagnetic waves in elliptical waveguides made of materials with anisotropic Hermitian dielectric tensors. Waves Random Complex Media. 2011;21:3–12.
  • Niknam A, Akhlaghipour N. Microwave ponderomotive action on the inhomogeneous collisionless and collisional plasmas. Waves Random Complex Media. 2013;23:183–199.
  • Niknam A, Mirzaye T, Khorashadizadeh S. Ohmic heating and space charge effects in microwave-plasma interaction. Laser Part Beams. 2015;33:87–95.
  • Ishimaru A. Electromagnetic wave propagation, radiation, and scattering: from fundamentals to applications. Hoboken (NJ): John Wiley & Sons; 2017.
  • Thostenson E, Chou WT. Microwave processing: fundamentals and applications. Compos Part A: Appl Sci Manuf. 1999;30:1055–1071.
  • El Khaled D, Novas N, Gazquez J, et al. Microwave dielectric heating: applications on metals processing. Renew Sustain Energy Rev. 2018;82:2880–2892.
  • Li Y, He T. Investigation of a half-space heated by laser pulses based on the generalized thermoelastic theory with variable thermal material properties. Waves Random Complex Media. 2020;1–17.
  • Boyle A, Cook H, Buchanan T. The effect of micro-waves; a preliminary investigation. Br J Phys Med: Incl Appl Ind. 1950;13:2.
  • Kostas ET, Beneroso D, Robinson JP. The application of microwave heating in bioenergy: a review on the microwave pre-treatment and upgrading technologies for biomass. Renew Sustain Energy Rev. 2017;77:12–27.
  • Alzahrani FS, Abbas IA. Analytical solutions of thermal damage in living tissues due to laser irradiation. Waves Random Complex Media. 2019;7:1–14.
  • Mondal S, Sur A, Kanoria M. A graded spherical tissue under thermal therapy: the treatment of cancer cells. Waves Random Complex Media. 2020;1–20.
  • Sur A, Mondal S, Kanoria M. Transient heating in a spherical tissue due to thermal therapy in the context of memory-dependent heat transport law. Waves Random Complex Media. 2020;1–19.
  • Datta AK. Handbook of microwave technology for food application. New York: CRC Press; 2001.
  • Ahmed J, Ramaswamy HS. Microwave pasteurization and sterilization of foods. In: Handbook of food preservation. Food Sci Technol. New York: Marcel Dekker; 2004. p. 691.
  • Campanone L, Zaritzky N. Mathematical analysis of microwave heating process. J Food Eng. 2005;69:359–368.
  • Hossan MR, Byun D, Dutta P. Analysis of microwave heating for cylindrical shaped objects. Int J Heat Mass Transf. 2010;53:5129–5138.
  • Mekonnen SA, Yenikaya S, Yenikaya G, et al. Effects of sample's dielectric property on the performance of microwave heating. 2017 10th Int Conf Electr Electron Eng (ELECO) (IEEE). 2017; p. 1440–1443.
  • Domínguez-Tortajada E, Monzó-Cabrera J, Díaz-Morcillo A, et al. Uniform electric field distribution in microwave heating applicators by means of genetic algorithms optimization of dielectric multilayer structures. IEEE Trans Microw Theory Tech. 2007;55:85–90.
  • Cha-um W, Rattanadecho P, Pakdee W. Experimental analysis of microwave heating of dielectric materials using a rectangular wave guide (MODE: TE10) (Case study: Water layer and saturated porous medium). Exp Therm Fluid Sci. 2009;33;472–481.
  • Hossan MR, Dutta P. Effects of temperature dependent properties in electromagnetic heating. Int J Heat Mass Transf. 2012;55:3412–3422.
  • Alisoy H, Us SB, Alagoz B. An FDTD based numerical analysis of microwave propagation properties in a skin–fat tissue layers. Optik. 2013;124:5218–5224.
  • Zilberti L, Voyer D, Bottauscio O, et al. Effect of tissue parameters on skin heating due to millimeter EM waves. IEEE Trans Magn. 2015;51:1–4.
  • Wang W, Mandelis A. Microwave-heating-coupled photoacoustic radar for tissue diagnostic imaging. J Biomed Opt. 2016;21:066018.
  • Taqi A, Farcot E, Robinson JP, et al. Understanding microwave heating in biomass-solvent systems. Chem Eng J. 2020;393: 124741.
  • Bellizzi GG, Drizdal T, van Rhoon GC, et al. The potential of constrained SAR focusing for hyperthermia treatment planning: analysis for the head & neck region. Phys Med Biol. 2018;64:015013.
  • Müller J, Hartmann J, Bert C, et al. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators. Phys Med Biol. 2016;61:2646.
  • Mendez HG, Pantoja J, Arango MP, et al. Hyperthermia study in cancer treatment. 2018 Int Appl Comput Electromagnetics Soc Symp (ACES) (IEEE).p. 1–2.
  • Dutta J, Kundu B. Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J Thermal Biol. 2018;71:41–51.
  • Dutta J, Kundu B. Exact analysis based on BDLTNE approach for thermal behaviour in living tissues during regional hyperthermia therapy. Acta Mech. 2019;230(8):2853–2871.
  • Dutta J, Kundu B, Yook S-J. Three-dimensional thermal assessment in cancerous tumors based on local thermal non-equilibrium approach for hyperthermia treatment. Int J Thermal Sci. 2021;159:106591.
  • Trefná HD, Crezee H, Schmidt M, et al. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. Int J Hyperthermia. 2017;33:471–482.
  • Ansari M, Zarei M, Akhlaghipour N, et al. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain. J Phys D: Appl Phys. 2017;50:495401.
  • Ansari M, Akhlaghipour N, Zarei M, et al. 2018 Microwave reflection, transmission, and absorption by human brain tissue Saratov Fall Meeting 2017: Optical Technologies in Biophysics and Medicine XIX vol 10716 (International Society for Optics and Photonics) p. 107160T.
  • Alikhani S, Ansari M, Niknam A. Simulation of thermoacoustic resonance response of tumor by finite element method. J Appl Phys. 2019;126:174701.
  • Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol. 1996;41:2271.
  • Lazebnik M, Popovic D, McCartney L, et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys Med Biol. 2007;52:6093.
  • Lazebnik M, Converse MC, Booske JH, et al. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range. Phys Med Biol. 2006;51:1941.
  • Pozar MD. Microwave engineering 3e. New York: Wiley; 2006.
  • Eliezer Shalom. The interaction of high-power lasers with plasmas. Boca Raton (FL): CRC Press; 2002.
  • Ahmadikia H, Fazlali R, Moradi A, et al. Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue. Int Commun Heat Mass Transf. 2012;39(1):121–130.
  • Ahmadikia H, Moradi A, Fazlali R, et al. Analytical solution of non-Fourier and Fourier bioheat transfer analysis during laser irradiation of skin tissue. J Mech Sci Technol. 2012;26(6):1937–1947.
  • Foster KR, Lozano-Nieto A, Riu PJ, et al. Heating of tissues by microwaves: a model analysis. Bioelectromagnetics. 1998;19:420–428.
  • Xu F, Lu TJ, Seffen KA, Ng EYK. Mathematical modeling of skin bioheat transfer. Appl Mech Rev. 2009;62(5):050801.
  • Schramm W, Yang D, Haemmerich D. Contribution of direct heating thermal conduction and perfusion during radiofrequency and microwave ablation. In 2006 Int Conf IEEE Eng Med Biol Soc IEEE. 2006;p. 5013–5016.
  • Liu J, Xu LX. Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating at the skin surface. IEEE Trans Biomed Eng. 1999;46(9):1037–1043.
  • Gordon RG, Roemer RB, Horvath SM. A mathematical model of the human temperature regulatory system-transient cold exposure response. IEEE Trans Biomed Eng. 1976;6:434–444.
  • Haus HA, Melcher JR. Electromagnetic fields and energy. Englewood Cliffs (NJ): Prentice Hall; 1989.
  • Ayappa K, Davis H, Crapiste G, et al. Microwave heating: an evaluation of power formulations. Chem Eng Sci. 1991;46:1005–1016.
  • Elsherbeni AZ, Demir V. The finite-difference time-domain method for electromagnetics with MATLAB simulations. The Institution of Engineering and Technology; 2016.
  • Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. London: Artech House; 2005.
  • Yoon J, Cho J, Kim N, et al. High-frequency microwave ablation method for enhanced cancer treatment with minimized collateral damage. Int J Cancer. 2011;129:1970–1978.
  • Prasad B, Kim S, Cho W, et al. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia. J Thermal Biol. 2018;74:281–289.
  • Oloumi D, Winter RSC, Kordzadeh A, et al. Microwave imaging of breast tumor using time-domain UWB circular-SAR technique. IEEE Trans Med Imaging. 2020;39:934–943.
  • Kuehne A, Oberacker E, Waiczies H, et al. Solving the time-and frequency-multiplexed problem of constrained radiofrequency induced hyperthermia. Cancers. 2020;12:1072.
  • Li K, Sasaki K, Watanabe S, et al. Relationship between power density and surface temperature elevation for human skin exposure to electromagnetic waves with oblique incidence angle from 6 GHz to 1 THz. Phys Med Biol. 2019;64:065016.
  • Hashimoto Y, Hirata A, Morimoto R, et al. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz. Phys Med Biol. 2017;62:3124.
  • Gupta P, Srivastava A. Non-fourier transient thermal analysis of biological tissue phantoms subjected to high intensity focused ultrasound. Int J Heat Mass Transf. 2019;136:1052–1063.
  • Kumar S, Srivastava A. Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation. Appl Math Model. 2017;52:378–403.
  • Akshay P, Sumit K, Atul S. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells. J Therm Biol. 2016;61;16–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.