181
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Ion-acoustic solitary, breathers, and freak waves inadegenerate quantum plasma

&
Pages 434-455 | Received 30 Sep 2020, Accepted 29 Mar 2021, Published online: 09 Apr 2021

References

  • Salamin YI, Hu SX, Hatsagortsyam Z, et al. Relativistic high-power laser-matter interactions. Phys Rep. 2006;427:41–155.
  • Manfredi G, Hervieux PA. Solitary acoustic pulses in quantum semiconductor plasmas. Appl Phys Lett. 2007;91:061108.
  • Craighead HG. Nanoelectromechanical systems. Science. 2000;290:1532–1535.
  • Harding AK, Lai D. Physics of strongly magnetized neutron stars. Rep Prog Phys. 2006;69:2631–2708.
  • Shapiro L, Teukolsky SA. Black holes, White dwarfs and neutron stars: the physics of compact Objects. New York: John Wiley and Sons; 1973.
  • Mermin ND, Canel E. Long wavelength oscillations of a quantum plasma in a uniform magnetic field. Ann Phys. 1964;26:247–273.
  • Andreev PA. Exchange effects in Coulomb quantum plasmas: dispersion of waves in 2D and 3D quantum plasmas. Ann Phys. 2014;350:198–210.
  • Sahu B, Misra AP. Magnetohydrodynamic shocks in a dissipative quantum plasma with exchange-correlation effects. Eur Phys J Plus. 2017;132:316.
  • Hass F, Mahmood S. Nonlinear ion-acoustic solitons in a magnetized quantum plasma with arbitrary degeneracy of electrons. Phys Rev E. 2016;94:033212.
  • Singh K, Sethi P, Saini NS. Nonlinear excitations in a degenerate relativistic magneto-rotating quantum plasma. Phys Plasmas. 2019;26:092104.
  • Shukla PK, Eliasson B, Stenflo L. Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma. Phys Plasmas. 2012;19:072302.
  • Askerov BM, Figarova SR. Thermodynamics, Gibbs method and statistical physics of electron gases. Berlin: Springer-Verlag; 2010.
  • Andreev PA, Kuz'menkov LS. Eigenwaves in a two-component system of particles with nonzero magnetic moments. Moscow Univ Phys Bull. 2007;62(5):271–276.
  • Misra AP, Brodin G, Marklund M, et al. Circularly polarized modes in magnetized spin plasmas. J Plasma Phys. 2010;76:857–864.
  • Andreev PA. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: spin-electron acoustic wave appearance. Phys Rev E. 2015;91:033111.
  • Andreev PA, Kuzmenkov LS. Oblique propagation of longitudinal waves in magnetized spin-1/2 plasmas: independent evolution of spin-up and spin-down electrons. Ann Phys. 2015;361:278–292.
  • Ahmad R, Gul N, Adnan M, et al. Nonlinear electrostatic solitary pulses in magnetized quantum plasma with relative density effects of spin-up and spin-down electrons. Phys Plasmas. 2016;23:112112.
  • Hussain S, Mahmood S. Ion-acoustic shocks in magnetized quantum plasmas with relative density effects of spin-up and spin-down degenerate electrons. Phys Plasmas. 2017;24:102106.
  • Kaur N, Kaur R, Saini NS. Ion-acoustic cnoidal waves with the density effect of spin-up and spin-down degenerate electrons in a dense astrophysical plasma. Z Naturforsch A. 2020;75(2):103–111.
  • Montina A, Bortolozzo U, Residori S, et al. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys Rev Lett. 2009;103:173901.
  • Müller P, Garrett C, Osborne A. Rogue waves. Oceanography. 2005;18:66–75.
  • Bludov YV, Konotop VV, Akhmediev N. Matter rogue waves. Phys Rev A. 2009;80:033610.
  • Stenflo L, Marklund M. Rogue waves in the atmosphere. J Plasma Phys. 2010;76:293–295.
  • Peregrine DH. Water waves, nonlinear Schrödinger equations and their solutions. J Austral Math Soc Ser B. 1983;25:16–43.
  • Remoissenet M. Waves called solitons: concepts and experiments. Berlin: Springer; 1994.
  • Leo F, Gelens L, Haelterman M, et al. Dynamics of one-dimensional Kerr cavity solitons. Opt Express. 2013;21:9180.
  • Dysthe KB, Trulsen K. Note on breather type solutions of the NLS as models for freak waves. Phys Scr T. 1999;82:48.
  • Kibler B, Fatome J, Finot C, et al. The Peregrine soliton in nonlinear fibre optics. Nature Phys. 2010;6:790–795.
  • Bailung H, Sharma SK, Nakamura Y. Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys Rev Lett. 2011;107:255005.
  • Chabchoub A, Hoffmann NP, Akhmediev N. Rogue wave observation in a water wave tank. Phys Rev Lett. 2011;106:204502.
  • Akhmediev N, Ankiewicz A, Taki M. Waves that appear from nowhere and disappear without a trace. Phys Lett A. 2009;373:675–678.
  • Ma Y. The perturbed planewave solutions of the cubic Schrödinger equation. Stud Appl Math. 1979;60:43–58.
  • Kedziora DJ, Ankiewicz A, Akhmediev N. Circular rogue wave clusters. Phys Rev E. 2011;84:056611.
  • Chien H, Kao CC, Chuang LHZ. On the characteristics of observed coastal freak waves. Coast Eng J. 2002;44:301–319.
  • Pathak P, Sharma SK, Nakamura Y, et al. Observation of second order ion acoustic Peregrine breather in multicomponent plasma with negative ions. Phys Plasmas. 2016;23:022107.
  • El-Tantawy SA, Wazwaz AM, Shan SA. On the nonlinear dynamics of breathers waves in electronegative plasmas with Maxwellian negative ions. Phys Plasmas. 2017;24:022105.
  • Abdikian A, Ismaeel S. Ion-acoustic rogue waves and breathers in relativistically degenerate electron-positron plasmas. Eur Phys J Plus. 2017;132:368.
  • Wang XB, Han B. On the breathers and rogue waves to a (2+1)-dimensional nonlinear Schrödinger equation with variable coefficients. Waves Random Complex Media. doi: 10.1080/17455030.2019.1646944.
  • El-Tantawy SA, Salas AH, Hammad MB, et al. Impact of dust kinematic viscosity on the breathers and rogue waves in a complex plasma. Waves Random Complex Media. doi: 10.1080/17455030.2019.1698790. having kappa distributed particles
  • Shahmansouri M, Alinejad H, Tribeche M. Breather structures in degenerate relativistic non-extensive plasma. J Plasma Phys. 2017;83:905830303.
  • El-Tantway SA, Shan SA, Akhtar N, et al. Impact of electron trapping in degenerate quantum plasma on the ion-acoustic breathers and super freak waves. Chaos, Solitons & Fractals. 2018;113:356–364.
  • Singh K, Saini NS. The evolution of rogue wave triplets and super rogue waves in superthermal polarized space dusty plasma. Phys Plasmas. 2019;26:113702.
  • Saini NS, Kourakis I. Dust-acoustic wave modulation in the presence of superthermal ions. Phys Plasmas. 2008;15:123701.
  • Kuznestov E. Solitons in a parametrically unstable plasma. Sov Phys Dokl. 1977;22:507.
  • El-Tantway SA, Bedwehy NA, El-Labany SK. Ion-acoustic super rogue waves in ultracold neutral plasmas with nonthermal electrons. Phys Plasmas. 2013;20:072102.
  • Guo S, Mei L, Sun A. Nonlinear ion-acoustic structures in a nonextensive electron-positron-ion-dust plasma: modulational instability and rogue waves. Ann Phys. 2012;332:38–55.
  • El-Bedwehy N. Freak waves in GaAs semiconductor. Physica B Condens Matter. 2014;442:114–117.
  • Kaur N, Saini NS. Ion acoustic kinetic Alfvn rogue waves in two temperature electrons superthermal plasmas. Astrophys Space Sci. 2016;361:331.
  • Koester D, Chanmugam G. Physics of white dwarf stars. Rep Prog Phys. 1990;53:837–915.
  • Chabrier G, Saumon D, Potekhin AY. Dense plasmas in astrophysics: from giant planets to neutron stars. J Phys A: Math Gen. 2006;39:4411–4419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.