135
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

The dispersion of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder with the initial inhomogeneous thermal stresses

&
Pages 471-509 | Received 13 Feb 2020, Accepted 29 Mar 2021, Published online: 09 Apr 2021

References

  • Selim MM. Thermal effects on propagation of transverse waves in anisotropic incompressible dissipative pre-stressed plate. Appl Math Inf Sci. 2016;10(3):1091–1095. doi:10.18576/amis/100327.
  • Shahani AR, Torki HS. Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity. Continuu Mech Thermodyn. 2018;30:509–527. doi:10.1007/s00161-017-0618-2.
  • Eringen AC, Suhubi ES. Elastodynamics, finite motion, vol. I; linear theory, vol. II. New-York: Academic Press; 1975.
  • Guz AN. Elastic waves in bodies with initial (residual) stresses. A.C.K. Kyiv; 2004. Russian.
  • Ogden RW. Non-linear elastic deformations. New York: Dover; 1997.
  • Destrade M, Saccomandi G. Waves in nonlinear pre-stressed materials. Wien, New York: Springer; 2007.
  • Akbarov SD. Dynamics of pre-strained bi-material elastic systems: linearized three-dimensional approach. Heidelberg, New-York (USA): Springer; 2015.
  • Li GY, He Q, Mangan R, et al. Guided waves in pre-stressed hyperelastic plates and tubes: application to the ultrasound elastography of thin-walled soft materials. J Mech Phys Solids. 2017;102:67–79. doi:10.1016/j.jmps.2017.02.008.
  • Paul P, Santimoy Kundu S, Dinbandhu Mandal D. Study of Rayleigh type surface wave in the initial stressed irregular bottom of ocean due to point source. Waves Random Complex Media. 2017;28(1):76–95. doi:10.1080/17455030.2017.1328146.
  • Saha S, Singh AK, Chattopadhyay A. On propagation behavior of SH-wave and Rayleigh-type wave in an initially stressed exponentially graded fiber-reinforced viscoelastic layered structure. Waves Random Complex Media, doi:10.1080/17455030.2019.1599147
  • Demiray H, Suhubi ES. Small torsional oscillation in initially twisted circular rubber cylinder. International Journal of Engineering Sciences. 1970;8:19–30. doi:10.1016/0020-7225(70)90011-X.
  • Akbarov SD, Guliyev MS, Kepceler T. Dispersion relations of axisymmetric wave propagation in initially twisted bi-material compounded cylinders. J Sound Vib. 2011;330:1644–1664. doi:10.1016/j.jsv.2010.10.020.
  • Engin H, Suhubi ES. Torsional oscillations of an infinite cylindrical elastic tube under large internal and external pressure. International Journal of Engineering Sciences. 1978;16:387–396. doi:10.1016/0020-7225(78)90028-9.
  • Shearer T, Abrahams ID, Parnell WJ, et al. Torsional wave propagation in a pre-stressed hyper-elastic annular circular cylinder. Q J Mech Appl Mech. 2013;66:465–487. doi:10.1093/qjmam/hbt014.
  • Wu B, Su Y, Liu D, et al. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders. J Sound Vib. 2018;421:17–47. doi:10.1016/j.jsv.2018.01.055.
  • Akbarov SD, Bagirov ET. Axisymmetric longitudinal wave dispersion in a bi-layered circular cylinder with inhomogeneous initial stresses. J Sound Vib. 2019;450:1–27. doi:10.1016/j.jsv.2019.03.003.
  • Akbarov SD, Bagirov ET. Dispersion of axisymmetric longitudinal waves in a “hollow cylinder + surrounding medium” system with inhomogeneous initial stresses. Struct Eng Mech. 2019;72(5):597–615. doi:10.12989/sem.2019.72.5.597.
  • Nedin R, Dudarev V, Vatulyan A. Some aspects of modeling and identification of inhomogeneous residual stress. Eng Struct. 2017;151:391–405. doi:10.1016/j.engstruct.2017.08.007.
  • Singhal A, Sahu A. Transference of Rayleigh waves in corrugated orthotropic layer over a pre-stressed orthotropic half-space with self weight. Procedia Eng. 2017;173:972–979. doi:10.1016/j.proeng.2016.12.164.
  • Sahu SA, Singhal A, Chaudhary S. Surface wave propagation in functionally graded piezoelectric material: An analytical solution. Intelligent Material Systems and Structures. 2017;29(3):423–437. doi:10.1177/1045389X17708047.
  • Singhal A, Sahu SA, Chaudhary S. Liouville-green approximation: an analytical approach to study the elastic waves vibrations in composite structure of piezo material. Compos Struct. 2018;184:714–727. doi:10.1016/j.compstruct.2017.10.031.
  • Singh MK, Sahu SA, Singhal A, et al. Approximation of surface wave velocity in smart composite structure using Wentzel-Kramers_Brilloun method. J Intell Mater Syst Struct. 2018;29(18):3582–3597. doi:10.1177/1045389X18786464.
  • Singhal A, Sahu SA, Chaudharu S. Approximation of surface wave frequency in piezo-composite structure. Composite Part B. 2018;144:19–28. doi:10.1016/j.compositesb.2018.01.017.
  • Chaudhary S, Sahu SA, Singhal A. On secular equation of SH waves propagating in pre-stressed and rotating piezo-composite structure with imperfect interface. J Intell Mater Syst Struct. 2018;29(10):2223–2235. doi:10.1177/1045389X18758192.
  • Chaudhary S, Sahu SA, Singhal A, et al. Interfacial imperfection study in pres-stressed rotating multiferroic cylindrical tube with wave vibration analytical approach. Material Research Express. 2019;6:105704, doi:10.1088/2053-1591/ab3880.
  • Chaudhary S, Sahu SA, Dewangan N, et al. Stresses produced due to moving load in a prestressed piezoelectric substrate. Mech Adv Mater Struct. 2019;26(12):1028–1041. doi:10.1080/15376494.2018.1430265.
  • Singhal A, Sahu SA, Nirval S, et al. Anatomy of flexoelectricity in micro plates with dielectrically highly/weakly and mechanically complaint interface. Material Research Express. 2019;6:105714, doi:10.1088/2053-1591/ab3152.
  • Nirwal S, Sahu SA, Singhal A, et al. Analysis of different boundary types on wave velocity in bedded piezo-structure with flexoelectric effect. Composite Part B. 2019;167:434–447. doi:10.1016/j.compositessb.2019.03.014.
  • Singhal A, Sedighi HM, Ebrahimi F, et al. Comparative study of the flexoelectricity effect with a highly/weakly interface in distinct piezoelectric materials (PZT-2, PZT-4, PZT-5H, LiNbO3, BaTiO3). Waves Random Complex Media. doi:10.1080/17455030.2019.1699676.
  • Singhal A, Sahu SA, Chaudhary S, et al. Initial and couple stress influence on the surface waves transmission in material layers with imperfect interface. Material Research Express. 2019;6:105713, doi:10.1088/2053-1591/ab40e2.
  • Ebrahimi F, Karimiasl M, Singhal A. Magneto-electro-elastic analysis of piezoelectric-flexoelectric nanobeams rested on silica aerogel foundation. Eng Comput, doi:10.1007/s00366-019-00869-z.
  • Saroj PK, Sahu SA, Singhal A, et al. On the transference of love-type waves in the pre-stressed PZT-5H material stick on SiO2 material with irregularity. Material Research Express. 2019;6:125703, doi:10.1088/2053-1591/ab5544.
  • Ebrahimi F, Dosseini SHS, Singhai A. A comprehensive review on the modelling of smart piezoelectric nanostructures. Struct Eng Mech. 2020;74(5):559–582. doi:10.12989/sem.2020.74.5.559.
  • Kurt I, Akbarov SD, Sezer S. Lamb wave dispersion in a PZT/metal/PZT sandwich plate with imperfect interface. Waves Random Complex Media. 2012;26(3):301–327.
  • Timoshenko S, Goodier JN, Theory of elasticity. New York: McGraw-Hill; 1951.
  • Watson GN, A treatise on the theory of Bessel functions. (2nd ed.). Cambridge: Cambridge University Press; 1966.
  • Engineering toolbox, coefficients of linear thermal expansion; 2003. [Online]. Available from: https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html.
  • Engineering toolbox, thermal conductivity of selected materials and gases; 2003. [Online]. Available from: https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.
  • Rose JL. Ultrasonic guided waves in solid media. New York: Cambridge University Press; 2014.
  • Prada C, Clorennec D, Royer D. Zero- group velocity modes and local vibrations of an elastic plate. J Acoust Soc Am. 2008;123:3156.
  • Baggens O, Ryden N. Poisson's ratio from polarization of acoustic zero-group velocity Lamb mode. J Acoust Soc Am. 2015;138:EL88.
  • Grünsteidl C, Murray TW, Berer T, et al. Inverse characterization of plates using zero group velocity Lamb modes. Ultrasonics. 2016;65:1–4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.