141
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Bilinear forms and vector bright solitons for a coupled nonlinear Schrödinger system with variable coefficients in an inhomogeneous optical fiber

ORCID Icon, , &
Pages 928-941 | Received 18 Oct 2020, Accepted 20 Apr 2021, Published online: 21 May 2021

References

  • Gao XY, Guo YJ, Shan WR. Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Appl Math Lett. 2021;120:107161.
  • Pankratova M, Vasylchenkova A, Derevyanko SA, et al. Painlevé test for some (2+1)-dimensional nonlinear equations. Phys Rev Appl. 2020;13:054021.
  • Yıldırım Y, Mirzazadeh M. Optical pulses with Kundu-Mukherjee-Naskar model in fiber communication systems. Chin J Phys. 2020;64:183–193.
  • Lan ZZ. Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber. Appl Math Lett. 2019;98:128–134.
  • Liu WJ, Zhu YN, Liu ML, et al. Optical properties and applications for MoS 2-Sb 2Te 3-MoS 2 heterostructure materials. Photonics Res. 2018;6:220–227.
  • Liu WJ, Pang LH, Han HN, et al. Dark solitons in WS 2 erbium-doped fiber lasers. Photonics Res. 2016;4:111–114.
  • Liu WJ, Pang LH, Han HN, et al. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt Express. 2017;25:2950–2959.
  • Liu WJ, Pang LH, Han HN, et al. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale. 2017;9:5806–5811.
  • Fan XY, Qu TQ, Huang SC, et al. Analytic study on the influences of higher-order effects on optical solitons in fiber laser. Optik. 2019;186:326–331.
  • Wang CJ, Nie ZZ, Xie WJ, et al. Dark soliton control based on dispersion and nonlinearity for third-order nonlinear Schrödinger equation. Optik. 2019;184:370–376.
  • Liu L, Tian B, Wu XY, et al. Vector dark solitons for a coupled nonlinear Schrödinger system with variable coefficients in an inhomogeneous optical fibre. Z Naturforsch A. 2017;72:779–787.
  • Porsezian K, Kuriakose VC. Optical solitons: Theoretical and experimental challenges. Berlin: Springer; 2003.
  • Serkin VN, Hasegawa A. Novel soliton solutions of the nonlinear Schrödinger equation model. Phys Rev Lett. 2000;85:4502-4505.
  • Jia TT, Gao YT, Deng GF, et al. Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons. Nonlinear Dyn. 2019;98:269–282.
  • Agrawal GP. Nonlinear fiber optics. New York (NY): Academic Press; 2007.
  • Manakov SV. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov Phys JETP. 1974;38:248–253.
  • Liu WJ, Zhang YJ, Triki H, et al. Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dyn. 2019;95:557–563.
  • Lan ZZ. Dark solitonic interactions for the (3+1)-dimensional coupled nonlinear Schrödinger equations in nonlinear optical fibers. Opt Laser Technol. 2019;113:462–466.
  • Meng GQ. High-order semi-rational solutions for the coherently coupled nonlinear Schrödinger equations with the positive coherent coupling. Appl Math Lett. 2020;105:106343.
  • Lan ZZ, Su JJ. Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 2019;96:2535–2546.
  • Lan ZZ, Hu WQ, Guo BL. General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl Math Model. 2019;73:695–714.
  • Gao XY, Guo YJ, Shan WR. Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations. Appl Math Lett. 2020;104:106170.
  • Gao XY, Guo YJ, Shan WR. Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system. Chaos Solitons Fract. 2020;138:109950.
  • Feng YJ, Gao YT, Li LQ, et al. Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur Phys J Plus. 2020;135:272.
  • Feng YJ, Gao YT, Jia TT, et al. Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows. Mod Phys Lett B. 2019;33:1950354.
  • Su JJ, Gao YT, Deng GF, et al. Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys Rev E. 2019;100:042210.
  • Su JJ, Gao YT, Ding CC. Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl Math Lett. 2019;88:201–208.
  • Hu L, Gao YT, Jia SL, et al. Solitons for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique. Mod Phys Lett B. 2019;33:1950376; Hu L, Gao YT, Jia TT, et al. Higher-order hybrid waves for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique. Z Angew Math Phys. 2021;72:75; Liu FY, Gao YT, Yu X, et al. Lie group analysis and analytic solutions for a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation in fluid mechanics and plasma physics. Eur Phys J Plus. 2021;in press. https://doi.org/10.1140/epjp/s13360-021-01469-x.
  • Jia TT, Gao YT, Yu X, et al. Lax pairs, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero-Bogoyavlenskii-Schiff-type equation. Appl Math Lett. 2021;114:106702.
  • Deng GF, Gao YT, Ding CC, et al. Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fract. 2020;140:110085.
  • Deng GF, Gao YT, Su JJ, et al. Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Nonlinear Dyn. 2020;99:1039–1052.
  • Li LQ, Gao YT, Hu L, et al. Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada-Kotera equation. Nonlinear Dyn. 2020;100:2729–2738.
  • Ding CC, Gao YT, Deng GF. Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves. Nonlinear Dyn. 2019;97:2023–2040.
  • Liu FY, Gao YT, Yu X, et al. Painleve analysis, lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics/plasma physics. Chaos Solitons Fract. 2021;144:110559.
  • Ding CC, Gao YT, Deng GF, et al. Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma. Chaos Solitons Fract. 2020;133:109580.
  • Wazwaz AM, Xu GQ. Bright, dark and Gaussons optical solutions for fourth-order Schrödinger equations with cubic–quintic and logarithmic nonlinearities. Optik. 2020;202:163564.
  • Abdou MA, Owyed S, Aty AA, et al. Optical soliton solutions for a space-time fractional perturbed nonlinear Schrödinger equation arising in quantum physics. Results Phys. 2020;16:102895.
  • Yoshii R, Nitta M. Nambu-Jona lasinio and nonlinear sigma models in condensed matter systems. Symmetry. 2019;11:636.
  • Han Y, Tian B, Yuan YQ, et al. Bilinear forms and bright-dark solitons for a coupled nonlinear Schrödinger system with variable coefficients in an inhomogeneous optical fiber. Chin J Phys. 2019;62:202–212.
  • Chakraborty S, Nandy S, Barthakur A. Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions. Phys Rev E. 2015;91:023210.
  • Nandy S, Barthakur A. Pairwise three soliton interactions, soliton logic gates in coupled nonlinear Schrödinger equation with variable coefficients. Commun Nonlinear Sci Numer Simulat. 2019;69:370–385.
  • Turitsyn SK, Bale BG, Fedoruk MP. Dispersion-managed solitons in fibre systems and lasers. Phys Rep. 2012;521:135–203.
  • Wang L, Zhang LL, Zhu YJ, et al. Modulational instability, nonautonomous characteristics and semirational solutions for the coupled nonlinear Schrödinger equations in inhomogeneous fibers. Commun Nonlinear Sci Numer Simulat. 2016;40:216–237.
  • Tiofacka CL, Mohamadoub A, Kofané TC, et al. Exact quasi-soliton solutions and soliton interaction for the inhomogeneous coupled nonlinear Schrödinger equations. J Mod Optic. 2010;57:261–272.
  • Musammil NM, Porsezian K, Subha PA, et al. Dynamics of vector dark solitons propagation and tunneling effect in the variable coefficient coupled nonlinear Schrödinger equation. Chaos. 2017;27:023113.
  • Tian J, Li J, Kang L, et al. Soliton solutions and soliton interactions for the coupled nonlinear Schrödinger equation with varying coefficients. Phys Scr. 2005;72:394.398
  • Dai C, Wang Y, Zhang J. Nonlinear similariton tunneling effect in the birefringent fiber. Opt Expr. 2010;18:17548–17554.
  • Hirota R. The direct method in soliton theory. New York (NY): Cambridge University Press; 2004.
  • Ohta Y, Wang DS, Yang J. General N–Dark–Dark solitons in the coupled nonlinear Schrödinger equations. Stud Appl Math. 2011;127:345–371.
  • Feng BF. General N-soliton solution to a vector nonlinear Schrödinger equation. J Phys A. 2014;47:355203.
  • Ohta Y, Yang J. General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc R Soc A. 2012;468:1716–1740.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.