739
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A dynamic model of the bi-exponential reconstitution and expenditure of W′ in trained cyclists

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abbiss, C. R., Menaspa, P., Villerius, V., & Martin, D. T. (2013). Distribution of power output when establishing a breakaway in cycling. International Journal of Sports Physiology and Performance, 8(4), 452–455. https://doi.org/10.1123/ijspp.8.4.452
  • Bartram, J. C., Thewlis, D., Martin, D. T., & Norton, K. I. (2018). Accuracy of W′ recovery kinetics in high performance cyclists—modeling intermittent work capacity. International Journal of Sports Physiology and Performance, 13(6), 724–728. https://doi.org/10.1123/ijspp.2017-0034
  • Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas-exchange. Journal of Applied Physiology (1985), 60(6), 2020–2027. https://doi.org/10.1152/jappl.1986.60.6.2020
  • Bergstrom, H. C., Housh, T. J., Zuniga, J. M., Traylor, D. A., Camic, C. L., Lewis Jr, R. W., Schmidt, R. J., & Johnson, G. O. (2013). The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Research Quarterly for Exercise and Sport, 84(2), 232–238. https://doi.org/10.1080/02701367.2013.784723
  • Bergstrom, H. C., Housh, T. J., Zuniga, J. M., Traylor, D. A., Lewis Jr, R. W., Camic, C. L., Schmidt, R. J., & Johnson, G. O. (2014). Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. Journal of Strength and Conditioning Research, 28(3), 592–600. https://doi.org/10.1519/JSC.0b013e31829b576d
  • Caen, K., Bourgois, G., Dauwe, C., Blancquaert, L., Vermeire, K., Lievens, E., … Boone, J. (2021). W’ recovery kinetics following exhaustion: A two-phase exponential process influenced by aerobic fitness. Medicine & Science in Sports & Exercise, 1911–1921. https://doi.org/10.1249/MSS.0000000000002673
  • Caen, K., Bourgois, J. G., Bourgois, G., Van Der Stede, T., Vermeire, K., & Boone, J. (2019). The reconstitution of W′ depends on both work and recovery characteristics. Medicine & Science in Sports & Exercise, 51(8), 1745–1751. https://doi.org/10.1249/MSS.0000000000001968
  • Chidnok, W., Dimenna, F. J., Bailey, S. J., Vanhatalo, A., Morton, R. H., Wilkerson, D. P., & Jones, A. M. (2012). Exercise tolerance in intermittent cycling. Medicine & Science in Sports & Exercise, 44(5), 966–976. https://doi.org/10.1249/MSS.0b013e31823ea28a
  • Chidnok, W., DiMenna, F. J., Fulford, J., Bailey, S. J., Skiba, P. F., Vanhatalo, A., & Jones, A. M. (2013a). Muscle metabolic responses during high-intensity intermittent exercise measured by31P-MRS: Relationship to the critical power concept. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 305(9), R1085–R1092. https://doi.org/10.1152/ajpregu.00406.2013
  • Chidnok, W., Fulford, J., Bailey, S. J., DiMenna, F. J., Skiba, P. F., Vanhatalo, A., … Jones, A. M. (2013b). Muscle metabolic determinants of exercise tolerance following exhaustion: Relationship to the “critical power”. Journal of Applied Physiology (1985), 115(2), 243–250. https://doi.org/10.1152/japplphysiol.00334.2013
  • Chorley, A., Bott, R. P., Marwood, S., & Lamb, K. L. (2019). Slowing the reconstitution of W’ in recovery with repeated bouts of maximal exercise. International Journal of Sports Physiology and Performance, 14(2), 149–155. https://doi.org/10.1123/ijspp.2018-0256
  • Chorley, A., Bott, R. P., Marwood, S., & Lamb, K. L. (2020). Physiological and anthropometric determinants of critical power, W’ and the reconstitution of W′ in trained and untrained male cyclists. European Journal of Applied Physiology, 120(11), 2349–2359. https://doi.org/10.1007/s00421-020-04459-6
  • Chorley, A., Bott, R. P., Marwood, S., & Lamb, K. L. (2022). Bi-exponential modelling of W’ reconstitution kinetics in trained cyclists. European Journal of Applied Physiology, 122(3), 677–689. https://doi.org/10.1007/s00421-021-04874-3
  • Day, J. R., Rossiter, H. B., Coats, E. M., Skasick, A., & Whipp, B. J. (2003). The maximally attainable VO2 during exercise in humans: The peak vs. maximum Issue. Journal of Applied Physiology (1985), 95(5), 1901–1907. https://doi.org/10.1152/japplphysiol.00024.2003
  • Etxebarria, N., Ingham, S. A., Ferguson, R. A., Bentley, D. J., & Pyne, D. B. (2019). Sprinting after having sprinted: Prior high-intensity stochastic cycling impairs the winning strike for gold. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00100
  • Forbes, S. C., Paganini, A. T., Slade, J. M., Towse, T. F., & Meyer, R. A. (2009). Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(1), R161–R170. https://doi.org/10.1152/ajpregu.90704.2008
  • Harris, R. C., Edwards, R. H., Hultman, E., Nordesjo, L. O., Nylind, B., & Sahlin, K. (1976). The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflügers Archiv, 367(2), 137–142. https://doi.org/10.1007/BF00585149
  • Haseler, L. J., Hogan, M. C., & Richardson, R. S. (1999). Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. Journal of Applied Physiology (1985), 86(6), 2013–2018. https://doi.org/10.1152/jappl.1999.86.6.2013
  • Hureau, T. J., Romer, L. M., & Amann, M. (2018). The ‘sensory tolerance limit': A hypothetical construct determining exercise performance? European Journal of Sport Science, 18(1), 13–24. https://doi.org/10.1080/17461391.2016.1252428
  • Johnson, M. A., Mills, D. E., Brown, P. I., & Sharpe, G. R. (2014). Prior upper body exercise reduces cycling work capacity but not critical power. Medicine & Science in Sports & Exercise, 46(4), 802–808. https://doi.org/10.1249/MSS.0000000000000159
  • Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., & Vanhatalo, A. (2019). The maximal metabolic steady state: Redefining the ‘gold standard’. Physiological Reports, 7(10), e14098. https://doi.org/10.14814/phy2.14098
  • Jones, A. M., & Vanhatalo, A. (2017). The ‘critical power’ concept: Applications to sports performance with a focus on intermittent high-intensity exercise. Sports Medicine, 47(S1), 65–78. https://doi.org/10.1007/s40279-017-0688-0
  • Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J., & Poole, D. C. (2008). Muscle metabolic responses to exercise above and below the “critical power” assessed using31P-MRS. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294(2), R585–R593. https://doi.org/10.1152/ajpregu.00731.2007
  • Lievens, E., Klass, M., Bex, T., & Derave, W. (2020). Muscle fiber typology substantially influences time to recover from high-intensity exercise. Journal of Applied Physiology (1985), 128(3), 648–659. https://doi.org/10.1152/japplphysiol.00636.2019
  • Lievens, M., Caen, K., Bourgois, J. G., Vermeire, K., & Boone, J. (2021). W’ reconstitution accelerates more with decreasing intensity in the heavy versus the moderate intensity domain. Medicine & Science in Sports & Exercise, 53(6), 1276–1284. https://doi.org/10.1249/MSS.0000000000002574
  • Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8(3), 329–338. https://doi.org/10.1080/00140136508930810
  • Moritani, T., Nagata, A., Devries, H. A., & Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339–350. https://doi.org/10.1080/00140138108924856
  • Morton, R. H., & Billat, L. V. (2004). The critical power model for intermittent exercise. European Journal of Applied Physiology, 91(2-3), 303–307. https://doi.org/10.1007/s00421-003-0987-z
  • Murgatroyd, S. R., & Wylde, L. A. (2011). The power-duration relationship of high-intensity exercise: From mathematical parameters to physiological mechanisms. The Journal of Physiology, 589(10), 2443–2445. https://doi.org/10.1113/jphysiol.2011.209346
  • Murgatroyd, S. R., Wylde, L. A., Cannon, D. T., Ward, S. A., & Rossiter, H. B. (2014). A ‘ramp-sprint’ protocol to characterise indices of aerobic function and exercise intensity domains in a single laboratory test. European Journal of Applied Physiology, 114(9), 1863–1874. doi:10.1007/s00421-014-2908-8
  • Nevill, A. M., Jones, D. A., McIntyre, D., Bogdanis, G. C., & Nevill, M. E. (1997). A model for phosphocreatine resynthesis. Journal of Applied Physiology (1985), 82(1), 329–335. https://doi.org/10.1152/jappl.1997.82.1.329
  • Parolin, M. L., Chesley, A., Matsos, M. P., Spriet, L. L., Jones, N. L., & Heigenhauser, G. J. (1999). Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. American Journal of Physiology-Endocrinology and Metabolism, 277(5), E890–E900. https://doi.org/10.1152/ajpendo.1999.277.5.E890
  • Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B., & Jones, A. M. (2016). Critical power. Medicine & Science in Sports & Exercise, 48(11), 2320–2334. https://doi.org/10.1249/MSS.0000000000000939
  • Skiba, P. F., Chidnok, W., Vanhatalo, A., & Jones, A. M. (2012). Modeling the expenditure and reconstitution of work capacity above critical power. Medicine & Science in Sports & Exercise, 44(8), 1526–1532. https://doi.org/10.1249/MSS.0b013e3182517a80
  • Skiba, P. F., Clarke, D., Vanhatalo, A., & Jones, A. M. (2014a). Validation of a novel intermittent W’ model for cycling using field data. International Journal of Sports Physiology and Performance, 9(6), 900–904. https://doi.org/10.1123/ijspp.2013-0471
  • Skiba, P. F., & Clarke, D. C. (2021). The W’ balance model: Mathematical and methodological considerations. International Journal of Sports Physiology and Performance, 16(11), 1561–1572. https://doi.org/10.1123/ijspp.2021-0205
  • Skiba, P. F., Fulford, J., Clarke, D. C., Vanhatalo, A., & Jones, A. M. (2015). Intramuscular determinants of the ability to recover work capacity above critical power. European Journal of Applied Physiology, 115(4), 703–713. https://doi.org/10.1007/s00421-014-3050-3
  • Skiba, P. F., Jackman, S., Clarke, D., Vanhatalo, A., & Jones, A. M. (2014b). Effect of work and recovery durations on W′ reconstitution during intermittent exercise. Medicine & Science in Sports & Exercise, 46(7), 1433–1440. https://doi.org/10.1249/MSS.0000000000000226
  • Sreedhara, V. S. M., Ashtiani, F., Mocko, G. M., Vahidi, A., & Hutchison, R. E. (2020). Modeling the recovery of W′ in the moderate to heavy exercise intensity domain. Medicine & Science in Sports & Exercise, 52(12), 2646–2654. https://doi.org/10.1249/MSS.0000000000002425
  • van den Broek, N. M., De Feyter, H. M., Graaf, L. D., Nicolay, K., & Prompers, J. J. (2007). Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates. American Journal of Physiology-Cell Physiology, 293(1), C228–C237. https://doi.org/10.1152/ajpcell.00023.2007