194
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced removal of Cu(II) ions from aqueous solution by in-situ synthesis of zeolitic imidazolate framework-67@wood aerogel composite adsorbent

, , , &
Pages 45-55 | Received 12 Mar 2023, Accepted 07 Jun 2023, Published online: 22 Jun 2023

References

  • Abdel-Magied, A. F., Abdelhamid, H. N., Ashour, R. M., Fu, L., Dowaidar, M., Xia, W. and Forsberg, K. (2022) Magnetic metal-organic frameworks for efficient removal of cadmium (II), and lead (II) from aqueous solution. Journal of Environmental Chemical Engineering, 10(3), 107467.
  • Abdelhamid, H. N., Georgouvelas, D., Edlund, U. and Mathew, A. P. (2022) CelloZIFPaper: Cellulose-ZIF hybrid paper for heavy metal removal and electrochemical sensing. Chemical Engineering Journal, 446, 136614.
  • Araki, S., Li, T., Li, K. and Yamamoto, H. (2019) Preparation of zeolite hollow fibers for high-efficiency cadmium removal from waste water. Separation and Purification Technology, 221, 393–398.
  • Bezzina, J. P., Ruder, L. R., Dawson, R. and Ogden, M. D. (2019) Ion exchange removal of Cu (II), Fe (II), Pb (II) and Zn (II) from acid extracted sewage sludge–resin screening in weak acid media. Water Research, 158, 257–267.
  • Bhattacharya, A. K., Naiya, T. K., Mandal, S. N. and Das, S. K. (2008) Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chemical Engineering Journal, 137(3), 529–541.
  • Bryan, F. R. M., Otoniel, A. E. F., Kevin, J. F. A., Fabiola, C., Fausthon, F. D. S., Rafael, L. and Joan, M. R. D. (2023) MOF@biomass hybrids: Trends on advanced functional materials for adsorption. Environmental Research, 216, 114424.
  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B. and Hay, A. G. (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), 8877–8884.
  • Chen, G. Y., He, S., Shi, G. B., Ma, Y. S., Ruan, C. C., Jin, X., Chen, Q. L., Liu, X. Y., Dai, H. M., Chen, X. F. and Huang, D. M. (2021) In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chemical Engineering Journal, 423, 130184.
  • Chen, C. J., Song, J. W., Cheng, J., Pang, Z. Q., Gan, W. T., Chen, G., Kuang, Y. D., Huang, H., Ray, U., Li, T. and Hu, L. B. (2020) Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano, 14(12), 16723–16734.
  • Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J. and Huang, Z. (2018) Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering, 26, 289–300.
  • Godiya, B. C., Ruotolo, L. A. M. and Cai, W. Q. (2020) Functional biobased hydrogels for the removal of aqueous hazardous pollutants: current status, challenges, and future perspectives. Journal of Materials Chemistry A, 8, 21585–21612.
  • Guan, H., Cheng, Z. and Wang, X. (2018) Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano, 12(10), 10365–10373.
  • Guo, Z. Q., Zhou, J., Hou, H., Wu, X. M. and Li, Y. (2023) Recyclable Mg-MOF-74@ cellulose aerogel composites for efficient removal of heavy metals from wastewater. Journal of Solid State Chemistry, 323, 124059.
  • Hong, H. J., Ban, G., Kim, H. S., Jeong, H. S. and Park, M. S. (2021) Fabrication of cylindrical 3D cellulose nanofibril (CNF) aerogel for continuous removal of copper (Cu2+) from wastewater. Chemosphere, 278, 130288.
  • Huang, G. S., Huang, C., Tao, Y. L. and Li, H. Q. (2021b) Localized heating driven selective growth of metal-organic frameworks (MOFs) in wood: a novel synthetic strategy for significantly enhancing MOF loadings in wood. Applied Surface Science, 564, 150325.
  • Huang, Y., Zeng, X. F., Guo, L. L., Lan, J. H., Zhang, L. L. and Cao, D. P. (2018) Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Separation and Purification Technology, 194, 462–469.
  • Ji, Y., Wen, Y., Wang, Z., Zhang, S. and Guo, M. (2020) Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu (II) and organic pollutants removal. Journal of Cleaner Production, 255, 120276.
  • Jiang, M., Jin, X., Lu, X. Q. and Chen, Z. L. (2010) Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination, 252(1-3), 33–39.
  • Jun, B. M., Heo, J., Park, C. M. and Yoon, Y. (2019) Comprehensive evaluation of the removal mechanism of carbamazepine and ibuprofen by metal organic framework. Chemosphere, 235, 527–537.
  • Khulbe, K. C. and Matsuura, T. (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 8, 19.
  • Lalhmunsiama, Lee, S. M. and Tiwari, D. (2013) Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper (II) and lead (II). Chemical Engineering Journal, 225, 128–137.
  • Lei, C., Gao, J. K., Ren, W. J., Xie, Y. B., Abdalkarim, S. Y. H., Wang, S. L., Ni, Q. Q. and Yao, J. M. (2019) Fabrication of metal-organic frameworks@ cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydrate Polymers, 205, 35–41.
  • Li, D., Tian, X. J., Wang, Z. Q., Guan, Z., Li, X. Q., Qiao, H., Ke, H. Z., Luo, L. and Wei, Q.F. (2020) Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chemical Engineering Journal, 383, 123127.
  • Li, X., Yu, J. G. and Jaroniec, M. (2016) Hierarchical photocatalysts. Chemical Society Reviews, 45(9), 2603–2636.
  • Lin, G., Zeng, B., Li, J., Wang, Z. Y., Wang, S. X., Hu, T. and Zhang, L. B. (2023) A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism. Chemical Engineering Journal, 460, 141710.
  • Liu, J., Chen, T. W., Yang, Y. L., Bai, Z. C., Xia, L. R., Wang, M., Lv, X. L. and Li, L. (2020a) Removal of heavy metal ions and anionic dyes from aqueous solutions using amide-functionalized cellulose-based adsorbents. Carbohydrate Polymers, 230, 115619.
  • Liu, J., Ge, X., Ye, X., Wang, G., Zhang, H., Zhou, H., Zhang, Y. and Zhao, H. (2016) 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. Journal of Materials Chemistry A, 4, 1970–1979.
  • Liu, Y. X., Ke, X., Zhu, H. Q., Chen, R. Y., Zheng, X., Jin, Y. C. and Bruggen, V. D. B. (2020b) Treatment of raffinate generated via copper ore hydrometallurgical processing using a bipolar membrane electrodialysis system. Chemical Engineering Journal, 382, 122956.
  • Liu, J., Su, D., Yao, J., Huang, Y., Shao, Z. and Chen, X. (2017) Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment. Journal of Materials Chemistry A, 5(8), 4163–4171.
  • Lu, X. W., Wang, F., Li, X. Y., Shih, K. and Zeng, E. Y. (2016) Adsorption and thermal stabilization of Pb2+ and Cu2+ by zeolite. Industrial & Engineering Chemistry Research, 55(32), 8767–8773.
  • Luo, J. M., Yu, D. Y., Hristovski, K. D., Shen, Y. W., Westerhoff, P. and Crittenden, J. C. (2021) Critical review of advances in engineering nanomaterial adsorbents for metal removal and recovery from water: Mechanism identification and engineering design. Environmental Science & Technology, 55(8), 4287–4304.
  • Meng, J. W., Guan, H., Dai, X. J. and Wang, X. Q. (2021) Amino-functionalized wood aerogel for efficient removal of copper ions from water. International Journal of Polymer Science, 2021, 1–8.
  • Mo, L., Pang, H., Tan, Y., Zhang, S. and Li, J. (2019) 3D multi-wall perforated nanocellulosebased polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water. Chemical Engineering Journal, 378, 122157.
  • Mo, L. T., Shen, Y. L., Tan, Y. and Zhang, S. F. (2021) Ultralight and shapeable nanocellulose/metal-organic framework aerogel with hierarchical cellular architecture for highly efficient adsorption of Cu(II) ions. International Journal of Biological Macromolecules, 193, 1488–1498.
  • Mo, L. T., Tan, Y., Shen, Y. L. and Zhang, S. F. (2022) Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu (II). Chemosphere, 291, 132887.
  • Nguyen, T. A., Tran, D. B., Le, H. D. C., Nguyen, Q. L. and Pham, V. (2020) Thiosemicarbazone-modified cellulose: synthesis, characterization, and adsorption studies on Cu (II) removal. ACS Omega, 5(24), 14481–14493.
  • Peng, H. H., Xiong, W. P., Yang, Z. H., Cao, J., Jia, M. Y., Xiang, Y. P., Hu, Q. and Xu, Z. Y. (2021) Facile fabrication of three-dimensional hierarchical porous ZIF-L/gelatin aerogel: Highly efficient adsorbent with excellent recyclability towards antibiotics. Chemical Engineering Journal, 426, 130798.
  • Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knoble, C. B., O’Keeffe, M. and Yaghi, O. M. (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 43, 58–67.
  • Qian, J., Sun, F. and Qin, L. (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 82, 220–223.
  • Rathi, B. S. and Kumar, P. S. (2021) Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995.
  • Sajjadi, S. A., Mohammadzadeh, A., Tran, H. N., Anastopoulos, I., Dotto, G. L., Lopicic, Z. R., Sivamani, S., Rahmani-Sani, A., Ivanets, A. and Hosseini-Bandegharaei, A. (2018) Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. Journal of Environmental Management, 223, 1001–1009.
  • Semercioz, A. S., Gogüs, F., Çelekli, A. and Bozkurt, H. (2017) Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu (II). Journal of Cleaner Production, 165, 599–610.
  • Song, W. Q., Zhu, M., Zhu, Y. F., Zhao, Y. Z., Yang, M. X., Miao, Z. C., Ren, H. P., Ma, Q. and Qian, L. W. (2020) Zeolitic imidazolate framework-67 functionalized cellulose hybrid aerogel: an environmentally friendly candidate for dye removal. Cellulose, 27, 2161–2172.
  • Sun, Z. W., Yang, J. J., Qi, Y., Wang, F. L., Hong, W., Li, H. and Jiang, Y. Y. (2020) Facile preparation of hydroxyl-rich mesoporous magnesium silicate with excellent adsorption performance. Surfaces and Interfaces, 20, 100519.
  • Sun, Z., Zhao, L., Liu, C., Zhen, Y., Zhang, W. and Ma, J. (2019) A novel 3D adsorbent of reduced graphene oxide-β-cyclodextrin aerogel coupled hardness with softness for efficient removal of bisphenol A. Chemical Engineering Journal, 372, 896–904.
  • Tian, C., She, J., Wu, Y., Luo, S., Wu, Q. and Qing, Y. (2018) Reusable and cross-linked cellulose nanofibrils aerogel for the removal of heavy metal ions. Polymer Composites, 39(12), 4442–4451.
  • Tu, K. K., Puertolas, B., Vidal, M. A., Wang, Y., Sun, J. G., Traber, J., Burgert, I., Ramirez, J. P. and Keplinger, T. (2020) Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties. Advanced Science, 7(7), 1902897.
  • US-EPA (1991) Maximum contaminant level goals and national primary drinking water regulations for lead and copper; final rule. Federal Register.
  • Wang, Z., He, Y., Zhu, L., Zhang, L., Liu, B., Zhang, Y. K. and Duan, T. (2021b) Natural porous wood decorated with ZIF-8 for high efficient iodine capture. Materials Chemistry and Physics, 258, 123964.
  • Wang, Q. Y., Li, L. Q., Kong, L. C., Cai, G. Y., Wang, P., Zhang, J., Zuo, W. and Tian, Y. (2022) Compressible amino-modified carboxymethyl chitosan aerogel for efficient Cu(II) adsorption from wastewater. Separation and Purification Technology, 293, 121146.
  • Wang, K. L., Liu, X. R., Tan, Y., Zhang, W., Zhang, S. F. and Li, J. Z. (2019a) Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chemical Engineering Journal, 371, 769–780.
  • Wang, C., Xiong, C., He, Y. L., Yang, C., Li, X., Zheng, J. Z. and Wang, S. X. (2021a) Facile preparation of magnetic Zr-MOF for adsorption of Pb (II) and Cr (VI) from water: Adsorption characteristics and mechanisms. Chemical Engineering Journal, 415, 128923.
  • Wang, Z., Yan, Y. T., Shen, X. P., Jin, C. D., Sun, Q. F. and Li, H. Q. (2019b) A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. Journal of Materials Chemistry A, 7, 20706–20712.
  • Xing, H. T., Chen, J. H., Sun, X., Huang, Y. H., Su, Z. B., Hu, S. R., Weng, W., Li, S. X., Guo, H. X., Wu, W. B., He, Y. S., Li, F. M. and Huang, Y. (2015) NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu (II) from aqueous solution. Chemical Engineering Journal, 263, 280–289.
  • Xiong, Z., Zheng, H., Hu, Y., Hu, X., Ding, W., Ma, J. and Li, Y. (2021) Selective adsorption of Congo red and Cu (II) from complex wastewater by core-shell structured magnetic carbon@ zeolitic imidazolate frameworks-8 nanocomposites. Separation and Purification Technology, 277, 119053.
  • Xu, L. L., Xiong, Y., Dang, B. K., Ye, Z. N., Jin, C. D., Sun, Q. F. and Yu, X. H. (2019) In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Materials & Design, 182, 108006.
  • Yang, Z., Liu, H. W., Li, J., Yang, K., Chen, F. J. and Wang, B. D. (2020) High-throughput metal trap: Sulfhydryl-functionalized wood membrane stacks for rapid and highly efficient heavy metal Ion removal. ACS Applied Materials& Interfaces, 12, 15002–15011.
  • Yang, Q. X., Lu, R., Ren, S. S., Chen, C. T., Chen, Z. J. and Yang, X. Y. (2018a) Three dimensional reduced graphene oxide/ZIF-67 aerogel: effective removal cationic and anionic dyes from water. Chemical Engineering Journal, 348, 202–211.
  • Yang, J., Zhang, F. J., Lu, H. Y., Hong, X., Jiang, H. L., Wu, Y. and Li, Y. D. (2015) Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angewandte Chemie, 54, 10889–10893.
  • Yin, W. H., Xiong, Y. Y., Wu, H. Q., Tao, Y., Yang, L. X., Li, J. Q., Tong, X. L. and Luo, F. (2018) Functionalizing a metal-organic framework by a photoassisted multicomponent postsynthetic modification approach showing highly effective Hg (II) removal. Inorganic Chemistry, 57(15), 8722–8725.
  • Zhang, G. J., Chen, H. Y., Yang, G. J. and Fu, H. (2022) Preparation of In situ ZIF-9 grown on sodium alginate/polyvinyl alcohol hydrogels for enhancing Cu (II) adsorption from aqueous solutions. Journal of Inorganic and Organometallic Polymers and Materials, 32, 4576–4588.
  • Zhang, J., Guo, W., Li, Q., Wang, Z. and Liu, S. (2018) The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environmental Science: Nano, 5, 2482–2499.
  • Zhang, X. F., Wang, Z. G., Song, L. and Yao, J. F. (2021) In situ growth of ZIF-8 within wood channels for water pollutants removal. Separation and Purification Technology, 266, 118527.
  • Zhao, F., Repo, E., Song, Y., Yin, D., Hammouda, S. B., Chen, L., Kalliola, S., Tang, J., Tam, K. C. and Sillanpää, M. (2017) Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chemistry, 19(20), 4816–4828.
  • Zhao, B., Yuan, L., Wang, Y., Duan, T. and Shi, W. (2021) Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: from batch adsorption to dynamic column separation. ACS Applied Materials & Interfaces, 13(14), 16300–16308.
  • Zhou, G., Luo, J., Liu, C., Chu, L. and Crittenden, J. (2018) Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Research, 131, 246–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.