134
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Bond-line strength, chemical properties and cellulose crystallinity of welded pine and itauba wood

, , &
Pages 56-68 | Received 01 Mar 2023, Accepted 10 Jun 2023, Published online: 27 Jun 2023

References

  • ABNT NBR 7190 (1997) Projeto de Estruturas de Madeira. Rio de Janeiro: Associação Brasileira de Normas Técnicas (ABNT).
  • Adhikari, S., Quesada, H., Bond, B. and Hammett, T. (2020) Potential of hardwood lumber in cross laminated timber in North America: a CLT manufacturer´s perspective. Mass Timber Construction Journal, 3(1), 1–9.
  • Agarwal, U. P., Ralph, S. A., Reiner, R. S. and Baez, C. (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose, 23, 125–144. doi:10.1007/s10570-015-0788-7
  • Agarwal, U. P., Ralph, S. A., Reiner, R. S. and Baez, C. (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydrate Polymers, 190, 262–270. doi:10.1016/j.carbpol.2018.03.003
  • Agarwal, U. P., Reiner, R. S., Baez, C. and Ralph, S. A. (2023) Native state of wood cellulose: evidence that further supports its non-crystalline nature. Holzforschung. doi:10.1515/hf-2022-0176
  • Ahvenainen, P., Kontro, I. and Svedström, K. (2016) Comparison of sample crystallinity determination methods by x-ray diffraction for challenging cellulose I materials. Cellulose, 23(2), 1073–1086. doi:10.1007/s10570-016-0881-6
  • ASTM D143 (2021) Standard test methods for small clear specimens of timbers. West Conshohocken, PA: American Society for Testing and Materials (ASTM).
  • Auchet, S., Segovia, C., Mansouri, H. R., Meausoone, P.-J., Pizzi, A. and Omrani, P. (2010) Accelerating vs constant rate of insertion in wood dowel welding. Journal of Adhesion Science and Technology, 24(7), 1319–1328. doi:10.1163/016942409X12598231568384
  • Belleville, B., Segovia, C., Pizzi, A., Stevanovic, T. and Cloutier, A. (2011) Wood blockboards fabricated by rotational dowel welding. Journal of Adhesion Science and Technology, 25(20), 2745–2753. doi:10.1163/016942410X537323
  • Belleville, B. (2012) Soudage de bois feuillus par friction rotationnelle. Ph.D. Thesis (Laval University).
  • Belleville, B., Stevanovic, T., Cloutier, A., Pizzi, A., Prado, M., Erakovic, S., Diouf, P. N. and Royer, M. (2013) An investigation of thermochemical changes in Canadian hardwood species during wood welding. European Journal of Wood and Wood Products, 71(2), 245–257. doi:10.1007/s00107-013-0671-x
  • Belleville, B., Ozarska, B. and Pizzi, A. (2016) Assessing the potencial of wood welding for Australian eucalypts and tropical species. European Journal of Wood and Wood Products, 74, 753–757. doi:10.1007/s00107-016-1067-5
  • Belleville, B., Koumba-Yoya, G. and Stevanovic, T. (2018) Effect of wood welding process on chemical constituents of Australian eucalyptus. Journal of Wood Chemistry and Technology, 39(1), 43–56. doi:10.1080/02773813.2018.1494745
  • Bergerhoff, G. and Brown, I. D. (1987) Inorganic crystal structure database. Crystallographic databases. Chester: International Union of Crystallography, 77–95.
  • Bhuiyan, M. T. R., Hirai, N. and Sobue, N. (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46, 431–436. doi:10.1007/BF00765800
  • Biwolé, J. J. E., Biwolé, A. B., Mfomo, J. Z., Segovia, C., Pizzi, A., Chen, Y., Fongnzossie, E. F., Ateba, A. and Meaussone, P.-J. (2022). Causes of differential behavior of extractives on the natural cold water durability of the welded joints of three tropical woods. Journal of Adhesion Science and Technology, 36(12), 1314–1331. doi:10.1080/01694243.2021.1970318
  • Bocquet, J. F., Pizzi, A. and Resch, L. (2006) Full-scale (industrial) wood floor using welded-through dowels. Journal of Adhesion Science and Technology, 20(15), 1727–1739. doi:10.1163/156856106779024454
  • Bocquet, J. F., Pizzi, A., Despres, A., Mansouri, H. R., Resch, L., Michel, D. and Letort, F. (2007) Wood joints and laminated wood beams assembled by mechanically-welded wood dowels. Journal of Adhesion Science and Technology, 21(3–4), 301–317. doi:10.1163/156856107780684585
  • Bodig, J. and Jayne, B. A. (1982) Mechanics of wood and wood composites. New York, NY: Van Nostrand Reinhold.
  • Bunaciu, A. A., Udriştioiu, E. L. and Aboul-Enein, H. Y. (2015) X-ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry, 45(4), 289–299. doi:10.1080/10408347.2014.949616
  • Chien, Y.-C., Yang, T.-C., Hung, K.-C., Li, C.-C., Xu, J.-W. and Wu, J.-H. (2018) Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood. Polymer Degradation and Stability, 158, 220–227. doi:10.1016/j.polymdegradstab.2018.11.003
  • Coelho, A. A., Evans, J., Evans, I., Kern, A. and Parsons, S. (2011) The TOPAS symbolic computation system. Powder Diffraction, 26, S22–S25. doi: 10.1154/1.3661087
  • Csánady, E., Magoss, E. and Toljav, L. (2015) Quality of machined wood surfaces. New York City, NY: Springer International Publishing. doi:10.1007/978-3-319-22419-0
  • Davidson, T. C., Newman, R. H. and Ryan, M. J. (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydrate Research, 339(18), 2889–2893. doi:10.1016/j.carres.2004.10.005
  • De Figueiredo, L. P. and Ferreira, F. F. (2014) Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. Journal of Pharmaceutical Sciences, 103(5), 1394–1399. doi:10.1002/jps.23909
  • De La Torre, A. G., Bruque, S. and Aranda, M. A. G. (2001) Rietveld quantitative amorphous contente analysis. Journal of Applied Crystallography, 34, 196–202. doi:10.1107/S0021889801002485
  • Dedecek, R. A. (2008) Meio f́ısico para o crescimento de Pinus: Limitações e manejo. Pínus na silvicultura brasileira: chapter 4. Colombo, PR: EMBRAPA.
  • Delmotte, L., Ganne-Chedeville, C., Leban, J. M., Pizzi, A. and Pichelin, F. (2008) CP-MAS 13C NMR and FT-IR investigation of the degradation reactions of polymer constituents in wood welding. Polymer Degradation and Stability, 93(2), 406–412. doi:10.1016/j.polymdegradstab.2007.11.020
  • Delmotte, L., Mansouri, H. R., Omrani, P. and Pizzi, A. (2009) Influence of wood welding frequency on wood constituents chemical modifications. Journal of Adhesion Science and Technology, 23(9), 1271–1279. doi:10.1163/156856109X433991
  • Dias Jr., A. F., Oliveira, R. N., Deglise, X., De Souza, N. D. and Brito, J. O. (2019) Infrared spectroscopy analysis on charcoal generated by the pyrolysis of Corymbia citriodora wood. Revista Matéria, 24(3), doi:10.1590/s1517-707620190003.0700
  • Esteves, B., Marques, A. V., Domingos, I. and Pereira, H. (2013) Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y Tecnología, 15(2), 245–258. doi:10.4067/S0718-221X2013005000020
  • Faix, O. (1991) Condensation indices of lignins determined by FTIR-spectroscopy. Holz als Roh- und Werkstoff, 49(9), 356. doi:10.1007/BF02662706
  • Farrow, G. and Preston, D. (1960) Measurement of crystallinity in drawn polyethylene terephthalate fibres by X-ray diffraction. British Journal of Applied Physics, 11(8), 353–358. doi:10.1088/0508-3443/11/8/310
  • Fengel, D. and Wegener, G. (1984) Wood: chemistry, ultrastructure, reactions. New York, NY: Walter de Gruyter.
  • Field, A., Miles, J. and Field, Z. (2012) Discovering statistics using R. London, UK: Sage.
  • French, A. (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose, 27, 5445–5448. doi:10.1007/s10570-020-03172-z
  • Ganne-Chedeville, C. (2008) Soudage linéaire du bois: étude et compréhension des modifications physico-chimiques et développement d’une technologie d’assemblage innovante. Ph.D. Thesis. Henri Poincaré (University).
  • Groom, C. R., Bruno, I. J., Lightfoot, M. P. and Ward, S. C. (2016) The Cambridge structural database. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, B72, 171–179. doi:10.1107/S2052520616003954
  • Guo, J., Song, K., Salmén, L. and Yin, Y. (2015) Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydrate Polymers, 115, 207–214. doi:10.1016/j.carbpol.2014.08.040
  • Hahn, B., Vallée, T., Stamm, B. and Weinand, Y. (2014) Moment resisting connections composed of friction-welded spruce boards: experimental investigations and numerical strength prediction. European Journal of Wood and Wood Products, 72, 229–241. doi:10.1007/s00107-013-0769-1
  • Han, L., Kutnar, A., Sandak, J., Šušteršič, I. and Sandberg, D. (2023) Adhesive-and metal-free assembly techniques for prefabricated multi-layer engineered wood products: a review on wooden connectors. Forests, 14(2), 311. doi:10.3390/f14020311
  • Hill, C. A. S. (2006) Wood modification: chemical, thermal and other processes. Chichester, England: John Wiley & Sons.
  • Horman, I., Busuladžić, I., Hajro, I. and Beljak, N. (2016) Optimization of friction parameters in the process of wood welding without additional adhesives. In B. Katalinic (Ed.), Proceedings of the 26th DAAAM International Symposium (Vienna: DAAAM International), pp. 0501–0507.
  • Huang, A., Zhou, Q., Liu, J., Fei, B. and Sun, S. (2008) Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. Journal of Molecular Structure, 883–884, 60–166. doi:10.1016/j.molstruc.2007.11.061
  • Instituto de Pesquisas Tecnológicas (2022) Informações sobre madeiras. https://www.ipt.br/consultas_online/informacoes_sobre_madeira/busca.
  • Kubovský, I., Kačíkova, D. and Kačík, F. (2020) Structural changes of oak wood main components caused by thermal modification. Polymers, 12(2), 485. doi:10.3390/polym12020485
  • Leban, J. M., Pizzi, A., Wieland, S., Zanetti, M., Properzi, M. and Pichelin, F. (2004) X-ray microdensitometry analysis of vibration-welded wood. Journal of Adhesion Science and Technology, 18(6), 673–685. doi:10.1163/156856104839310
  • Leban, J. M., Pizzi, A., Properzi, M., Pichelin, F., Gelhaye, P. and Rose, C. (2005) Wood welding: a challenging alternative to conventional wood gluing. Scandinavian Journal of Forest Research, 20(6), 534–538. doi:10.1080/02827580500432305
  • Liu, Y., Tribodeaux, D., Gamble, G., Bauer, P. and VanDerveer, D. (2012) Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Applied Spectroscopy, 66(8), 983–986. doi:10.1366/12-06611
  • Mansouri, H. R., Omrani, P. and Pizzi, A. (2009) Improving the water resistance of linear vibration-welded wood joints. Journal of Adhesion Science and Technology, 23(1), 63–70. doi:10.1163/156856108X335595
  • Meier, E. (2022) Wood filter. https://www.wood-database.com/wood-filter/.
  • Montgomery, D. C. and Runger, G. C. (2003) Applied statistics and probability for engineers. New York, NY: Wiley.
  • Navi, P. and Sandberg, D. (2012) Thermo-hydro-mechanical processing of wood. Boca Raton, FL: CRC Press.
  • Nishiyama, Y., Langan, P. and Chanzy, H. (2002) Structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. Journal of the American Chemical Society, 124(31), 9074–9082. doi:10.1021/ja0257319
  • O’Loinsigh, C., Oudjene, M., Ait-Aider, H., Fanning, P., Pizzi, A., Shotton, E. and Meghlat, E. M. (2012) Experimental study of timber-to-timber composite beam using welded-through wood dowels. Construction and Building Materials, 36, 245–250. doi:10.1016/j.conbuildmat.2012.04.118
  • Özgenç, Ö, Duirmaz, S., Boyaci, I. H. and Eksi-Kocak, H. (2017) Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta A, 171, 395–400. doi:10.1016/j.saa.2016.08.026
  • Pandey, K. K. and Pitman, A. J. (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation, 52(3), 151–160. doi:10.1016/S0964-8305(03)00052-0
  • Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A. and Johnson, D. K. (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3(10), 1–10. doi:10.1186/1754-6834-3-10
  • Peña, M. I. (2014) Caractéristiques chimiques et anatomiques de la ligne de soudure du bois. Ph.D. Thesis (University of Lorraine).
  • Pizzi, A., Properzi, M., Leban, J. M., Zanetti, M. and Pichelin, F. (2003) Mechanically-induced wood welding. Maderas. Ciencia y Tecnología, 5(2), 101–106. doi:10.4067/S0718-221X2003000200001
  • Pizzi, A., Leban, J. M., Kanazawa, F., Properzi, M. and Pichelin, F. (2004) Wood dowel bonding by high-speed rotation welding. Journal of Adhesion Science and Technology, 18(11), 1263–1278. doi:10.1163/1568561041588192
  • Pizzi, A., Despres, A., Mansourz, H. R., Leban, J. M. and Rigolet, S. (2006) Wood joints by through-dowel rotation welding: microstructure, 13C-NMR and water resistance. Journal of Adhesion Science and Technology, 20(5), 427–436. doi:10.1163/156856106777144327
  • Poletto, M., Zattera, A. J., Forte, M. M. C. and Santana, R. M. C. (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148–153. doi:10.1016/j.biortech.2011.11.122
  • Popescu, M. C., Popescu, C. M., Lisa, G. and Sakata, Y. (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal of Molecular Structure, 988(1-3), 65–72. doi:10.1016/j.molstruc.2010.12.004
  • Rietveld, H. M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. doi:10.1107/S0021889869006558
  • Rodriguez, G., Diouf, P., Blanchet, P. and Stevanovic, T. (2010) Wood-Dowel bonding by high-speed rotation welding – application to two Canadian hardwood species. Journal of Adhesion Science and Technology, 24(8-10), 1423–1436. doi:10.1163/016942410X501025
  • Rowell, R. M. (2005) Handbook of wood chemistry and wood composites. Boca Raton, FL: CRC Press.
  • Sandberg, D., Kutnar, A., Karlsson, O. and Jones, D. (2021) Wood modification technologies. Principles, sustainability, and the need for innovation. Boca Raton, FL: CRC Press.
  • Schneid, E. and Moraes, P. D. (2016) União de peças de madeira por meio da técnica de soldagem por fricção rotacional. XV Encontro Brasileiro em Madeiras e em Estruturas de Madeira, XV EBRAMEM, 2016.
  • Segal, L. C., Creely, J. J., Martin, A. E. J. and Conrad, C. M. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786–794. doi:10.1177/004051755902901003
  • Shen, Y. H., Gao, Z. Z., Hou, X. F., Chen, Z. Y., Jiang, J. Y. and Sun, J. (2019) Spectral and thermal analysis of eucalyptus wood drying at different temperature and methods. Drying Technology, 38(3), 313–320. doi:10.1080/07373937.2019.1566742
  • Silverstein, R. M., Webster, F. X. and Kiemle, D. J. (2005) Spectrometric identification of organic compounds. Danvers, USA: John Wiley & Sons.
  • Skoog, D. A., Holler, F. J. and Crouch, S. R. (2018) Principles of instrumental analysis. Boston, MA: Cengage Learning.
  • Stamm, B., Windeisen, E., Natterer, J. and Wegener, G. (2006) Chemical investigations on the thermal behaviour of wood during friction welding. Wood Science and Technology, 40, 615–627. doi:10.1007/s00226-006-0097-2
  • Sun, Y. (2010) Modifications chimiques induites par le soudage du bois par rotation des goujons a haute vitesse. Master Thesis (Laval University).
  • Takahashi, K., Morooka, T. and Norimoto, M. (1998) Thermal softening of wet wood in the temperature range of 0 to 200 °C. Wood Research, 85(1), 79–80.
  • Toljav, L. and Faix, O. (1995) Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements. Holzforschung, 49, 397–404. doi:10.1515/hfsg.1995.49.5.397
  • Vaziri, M., Karlsson, O., Abrahamsson, L., Lin, C. F. and Sandberg, D. (2019) Wettability of welded wood-joints investigated by the Wilhelmy method: Part 1. Determination of apparent contact angles, swelling, and water sorption. Holzforschung, 75(1), 65–74. doi:10.1515/hf-2019-0308
  • Viana, A. C. C., Moraes, P. D., Weingaertner, W. L., Pedrazzi, C., Peres, I. and Finger, M. R. (2021a) Caracterização física e química das madeiras de pinus e de itaúba. Madeiras nativas e plantadas do Brasil: qualidade, pesquisas e atualidades: chapter 6. São Paulo, SP: Científica Digital, 101–116.
  • Viana, A. C. C., Moraes, P. D., Weingaertner, W. L., Zaniboni, P. N. and Prando, T. (2021b) Soldagem das madeiras de pinus e de itaúba por fricção rotativa. Revista Principia, 57, 63–75. doi:10.18265/1517-0306a2021id5809
  • Yin, J., Yuan, T., Lu, Y., Song, K., Li, H., Zhao, G. and Yin, Y. (2016) Effect of compression combined with steam treatment on the porosity, chemical composition and cellulose crystalline structure of wood cell walls. Carbohydrate Polymers, 155, 163–172. doi:10.1016/j.carbpol.2016.08.013
  • Zhu, X., Yi, S., Gao, Y., Zhao, Y. and Qiu, Y. (2017) Mechanical evaluation and XRD/TG investigation on the properties of wooden dowel welding. BioResources, 12(2), 3396–3412. doi:10.15376/biores.12.2.3396-3412
  • Zhu, X., Xue, Y., Zhang, S., Shen, J., Yi, S. and Gao, Y. (2018) Mechanics and crystallinity/thermogravimetric investigation into the influence of the welding time and CuCl2 on wood dowel welding. BioResources, 13(1), 1329–1347. doi:10.15376/biores.13.1.1329-1347
  • Zor, M. and Can, A. (2020) Shear strength in friction welded joint of poplar wood impregnated with copper-based wood preservative. Maderas-Ciencia y Tecnología, 23(9), 1–8. 10 4067/s0718-221 ( 2021000100409
  • Zor, M., Görgün, H. V. and Vaziri, M. (2021) X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (sem) kullanılarak kaynaklanan göknar, meşe ve kestane odununun yapısal karakterizasyonu. Journal of Bartin Faculty of Forestry, 23(3), 871–877. doi:10.24011/barofd.989542
  • Zoulalian, A. and Pizzi, A. (2007) Wood-dowel rotation welding – a heat-transfer model. Journal of Adhesion Science and Technology, 21(2), 97–108. doi:10.1163/156856107780437435
  • Župčić, I., Vlaović, Z., Domljan, D. and Grbac, I. (2014) Influence of various wood species and cross-sections on strength of a dowel welding joint. Drvna Industrija, 65(2), 121–127. doi:10.5552/drind.2014.1324

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.