99
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

Creep performance and analysis of glass fiber reinforced glulam beams under the influence of climatic conditions

, &
Pages 235-246 | Received 09 Mar 2023, Accepted 09 Jul 2023, Published online: 21 Jul 2023

References

  • Adamopoulos, S., et al., 2012. Adhesive bonding of beech wood modified with a phenol formaldehyde compound. European Journal of Wood and Wood Products, 70, 897–901. doi:10.1007/s00107-012-0620-0.
  • Alhayek, A., et al., 2022. Flexural creep behaviour of pultruded GFRP composites Cross-Arm: A comparative study on the effects of stacking sequence. Polymers, 14 (7), 1330. doi:10.3390/polym14071330.
  • Aratake, S., Morita, H., and Arima, T., 2011. Bending creep of glued laminated timber (glulam) using sugi (Cryptomeria japonica) laminae with extremely low Young’s modulus for the inner layers. Journal of Wood Science, 57, 267–275. doi:10.1007/s10086-011-1175-0.
  • Armstrong, L.D., and Kingston, R.S.T., 1960. Effect of moisture changes on creep in wood. Nature, 185, 862–863. doi:10.1038/185862c0.
  • Asyraf, M.R.M., et al., 2022a. Effect of stacking sequence on long-term creep performance of pultruded GFRP composites. Polymers, 14 (19), 4064. doi:10.3390/polym14194064.
  • Asyraf, M.R.M., et al., 2022b. Effect of fibre layering sequences on flexural creep properties of kenaf fibre-reinforced unsaturated polyester composite for structural applications. Fibers and Polymers, 23 (11), 3232–3240. doi:10.1007/s12221-022-4386-7.
  • Asyraf, M.R.M., et al., 2023. Creep properties and analysis of cross arms’ materials and structures in latticed transmission towers: Current progress and future perspectives. Materials, 16 (4), 1747. doi:10.3390/ma16041747.
  • Awaludin, A., Ngudiyono, N., and Basuki, A., 2016. Creep properties of walikukun (Schouthenia ovata) timber beams. Civil Engineering Dimension, 18 (2), 78–84. doi:10.9744/ced.18.2.78-84.
  • Basuki, A., et al., 2021. Compression and tension creep behaviour of LVL sengon (Paraserianthes falcataria). Asean Engineering Journal, 11 (1), 73–87. doi:10.11113/aej.v11.16668.
  • Bažant, Z.P., 1985. Constitutive equation of wood at variable humidity and temperature. Wood Science and Technology, 19, 159–177.
  • Bodig, J., and Jayne, B.A., 1993. Mechanics of wood and wood composites. New York: Krieger Publishing Company.
  • Davids, W.G., Dagher, H.J., and Breton, J.M., 2000. Modeling creep deformations of FRP-reinforced glulam beams. Wood and Fiber Science, 32, 426–441.
  • De Luca, V., and Della Chiesa, A., 2013. A creep non-linear FEM analysis of glulam timber. Mechanics of Advanced Materials and Structures, 20, 489–496. doi:10.1080/15376494.2011.627643.
  • EN 408:2010, 2010. Timber structures – structural timber and glued laminated timber – determination of some physical and mechanical properties.
  • Epmeier, H., et al., 2007. Bending creep performance of modified timber. Holz als Roh- und Werkstoff, 65, 343–351. doi:10.1007/s00107-007-0189-1.
  • Findley, W.N., and Davis, F.A., 2013. Creep and relaxation of nonlinear viscoelastic materials. Massachusetts: Courier Corporation.
  • Fu, Q., et al., 2020. Behavior of adhesively bonded engineered wood – wood chip concrete composite decks: Experimental and analytical studies. Construction and Building Materials, 247, 118578. doi:10.1016/j.conbuildmat.2020.118578.
  • Gowda, S., Kortesmaa, M., and Ranta-Maunus, A., 1996. Long term creep tests on timber beams in hearted and non-heated environments. Vol. 278 Of VTT working papers, VTT, Finland. VTT Technical Research Centre of Finland.
  • Granello, G., and Palermo, A., 2019. Creep in Timber: research overview and comparison between code provisions. New Zealand Timber Design Journal, 27, 6–22.
  • Guo, N., et al., 2022. Long-term loading test of reinforced glulam beam. Journal of Renewable Materials, 10 (1), 183–201. doi:10.32604/jrm.2021.015756.
  • Higgins, C., Barbosa, A.R., and Blank, C., 2017. Structural tests of concrete composite-cross-laminated timber floors final report.
  • Hunt, D.G., 1989. Linearity and non-linearity in mechano-sorptive creep of softwood in compression and bending. Wood Science and Technology, 23, 323–333. doi:10.1007/BF00353248.
  • Hunt, D.G., and Shelton, C.F., 1988. Longitudinal moisture-shrinkage coefficients of softwood at the mechano-sorptive creep limit. Wood Science and Technology, 22, 199–210. doi:10.1007/BF00386014.
  • Jacob, J., and Barragán, O.L.G., 2007. Flexural strengthening of glued laminated timber beams with steel and carbon fiber reinforced polymers. Chalmers tekniska högskola.
  • Jiang, Y., and Crocetti, R., 2019. CLT-concrete composite floors with notched shear connectors. Construction and Building Materials, 195, 127–139. doi:10.1016/j.conbuildmat.2018.11.066.
  • Kanócz, J., Bajzecerová, V., and Šteller, Š., 2015. Timber-concrete composite elements with various composite connections. Part 3: adhesive connection. Wood Research, 60, 939–952.
  • Kliger, R., Johansson, M., and Crocetti, R., 2008. Strengthening timber with CFRP or steel plates–short and long-term performance. In: WCTE 2008 – World Conference on Timber Engineering.
  • Lu, W., and Erickson, R.W., 1994. The effects of directed diffusion on the mechano-sorptive behavior of small redwood beams. Forest Products Journal, 44, 8.
  • Ma, X., et al., 2014. Comparison of bending creep behavior of bamboo-based composites manufactured by two types of stacking sequences. BioResources, 9, 5461–5472.
  • Mårtensson, A., 1994. Creep behavior of structural timber under varying humidity conditions. Journal of Structural Engineering, 120, 2565–2582. doi:10.1061/(ASCE)0733-9445(1994)120:9(2565).
  • O’Ceallaigh, C., et al., 2016. Viscoelastic creep in reinforced glulam. In: WCTE 2016 – World Conference on Timber Engineering.
  • O’Ceallaigh, C., et al., 2018. An investigation of the viscoelastic creep behaviour of basalt fibre reinforced timber elements. Construction and Building Materials, 187, 220–230. doi:10.1016/j.conbuildmat.2018.07.193.
  • O’Ceallaigh, C., et al., 2019a. An experimental and numerical study of moisture transport and moisture-induced strain in fast-grown Sitka spruce. Maderas. Ciencia y Tecnología, 21, 45–64.
  • O’Ceallaigh, C., et al., 2019b. The mechano-sorptive creep behaviour of basalt FRP reinforced timber elements in a variable climate. Engineering Structures, 200, 109702. doi:10.1016/j.engstruct.2019.109702.
  • O’Ceallaigh, C., et al., 2020. Modelling the hygro-mechanical creep behaviour of FRP reinforced timber elements. Construction and Building Materials, 259, 119899. doi:10.1016/j.conbuildmat.2020.119899.
  • Osmannezhad, S., Faezipour, M., and Ebrahimi, G., 2014. Effects of GFRP on bending strength of glulam made of poplar (Populus deltoids) and beech (Fagus orientalis). Construction and Building Materials, 51, 34–39. doi:10.1016/j.conbuildmat.2013.10.035.
  • Park, J.C., Shin, Y.J., and Hong, S.I., 2009. Bonding performance of glulam reinforced with glass fiber-reinforced plastics. Journal of The Korean Wood Science and Technology, 37 (4), 357–363.
  • Park, J.C., Song, Y.J., and Hong, S.I., 2020. Bending creep of glulam and bolted glulam under changing relative humidity. Journal of the Korean Wood Science and Technology, 48, 676–684. doi:10.5658/WOOD.2020.48.5.676.
  • Pulngern, T., et al., 2020. Effect of lamina thickness on flexural performance and creep behavior of Douglas fir glued laminated timber beam. Wood Research, 65, 715–726. doi:10.37763/wr.1336-4561/65.5.715726.
  • Raftery, G.M., and Harte, A.M., 2011. Low-grade glued laminated timber reinforced with FRP plate. Composites Part B: Engineering, 42, 724–735. doi:10.1016/j.compositesb.2011.01.029.
  • Raftery, G.M., and Whelan, C., 2014. Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods. Construction and Building Materials, 52, 209–220. doi:10.1016/j.conbuildmat.2013.11.044.
  • Ranta-Maunus, A., 1975. The viscoelasticity of wood at varying moisture content. Wood Science and Technology, 9, 189–205. doi:10.1007/BF00364637.
  • Romani, M., and Blaß, H.J., 2001. Design model for FRP reinforced glulam beams. In: CIB 2001 – International Council for Research and Innovation in Building and Construction, Working Commission W18 Timber Structures, Meeting (Vol. 34).
  • Sanchez, O.E., 2002. Performance study of in-service FRP reinforced glulam bridge girders. Doctoral dissertation. University of Maine.
  • Sena-Cruz, J., et al., 2012. Bond behavior between glulam and GFRP’s by pullout tests. Composites Part B: Engineering, 43, 1045–1055. doi:10.1016/j.compositesb.2011.10.022.
  • Song, Y.J., et al., 2015. Performance evaluation of bending strength of curved composite Glulams made of Korean white pine. Journal of the Korean Wood Science and Technology, 43, 463–469. doi:10.5658/WOOD.2015.43.4.463.
  • Song, Y.J., et al., 2021. Variations of moisture content in manufacturing CLT-concrete composite slab using wet construction method. BioResources, 16, 372–386. doi:10.15376/biores.16.1.372-386.
  • Song, Y.J., et al., 2022. Evaluation of the bending performance of glued CLT-concrete composite floors based on the CFRP reinforcement ratio. BioResources, 17, 2243–2258. doi:10.15376/biores.17.2.2243-2258.
  • Song, Y.J., and Hong, S.I., 2018. Performance evaluation of the bending strength of larch cross-laminated timber. Wood Research, 63, 105–116.
  • Taniguchi, T., Harada, H., and Nakato, K., 1978. Determination of water adsorption sites in wood by a hydrogen–deuterium exchange. Nature, 272, 230–231. doi:10.1038/272230a0.
  • Thilén, J., 2017. Testing of CLT-concrete composite decks. TVBK-5259.
  • Thorhallsson, E.R., Hinriksson, G.I., and Snæbjörnsson, J.T., 2017. Strength and stiffness of glulam beams reinforced with glass and basalt fibres. Composites Part B: Engineering, 115, 300–307. doi:10.1016/j.compositesb.2016.09.074.
  • Yahyaei-Moayyed, M., and Taheri, F., 2011a. Creep response of glued-laminated beam reinforced with pre-stressed sub-laminated composite. Construction and Building Materials, 25, 2495–2506. doi:10.1016/j.conbuildmat.2010.11.078.
  • Yahyaei-Moayyed, M., and Taheri, F., 2011b. Experimental and computational investigations into creep response of AFRP reinforced timber beams. Composite Structures, 93, 616–628. doi:10.1016/j.compstruct.2010.08.017.
  • Yang, H.F., et al., 2016. Prestressed glulam beams reinforced with CFRP bars. Construction and Building Materials, 109, 73–83. doi:10.1016/j.conbuildmat.2016.02.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.