110
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Vibroacoustic properties as a function of crystallinity changes in heat-treated Pinus radiata D. Don wood

, , &
Pages 247-252 | Received 28 Apr 2023, Accepted 12 Jul 2023, Published online: 25 Jul 2023

References

  • Ahmed, SA, and Adamopoulos, S, 2018. Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments. Applied Acoustics, 140, 92–99. doi:10.1016/j.apacoust.2018.05.017
  • Altgen, M, and Militz, H, 2016. Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system. Holzforschung, 70 (10), 971–979. doi:10.1515/hf-2015-0235
  • Bhuiyan, TR, Hirai, N, and Sobue, N, 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46, 431–436. doi:10.1007/BF00765800
  • Biziks, V, et al., 2010. Hydrothermal modification of soft deciduous wood: bending strength properties. In Hill CAS, Militz H and Andersons, B (eds). Proceedings of the 5th European conference on wood modification, Riga, Latvia.
  • Colom, X, et al., 2003. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability, 80 (3), 543–549. doi:10.1016/S0141-3910(03)00051-X
  • Endo, K, et al., 2016. Effects of heating humidity on the physical properties of hydrothermally treated spruce wood. Wood Science and Technology, 50 (6), 1161–1179. doi:10.1007/s00226-016-0822-4
  • Espinoza, O, Buehlmann, U, and Laguarda-Mallo, MF, 2015. Thermally modified wood: marketing strategies of U.S. producers. BioResources, 10 (4), 6942–6952. doi:10.15376/biores.10.4.6942-6952
  • Hilde, C, et al., 2014. The acoustic properties of water submerged lodgepole pine (Pinus contorta) and spruce (Picea spp.) wood and their suitability for use as musical instruments. Materials, 7 (8), 5688–5699. doi:10.3390/ma7085688
  • Inagaki, T, et al., 2010. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules, 11 (9), 2300–2305. doi:10.1021/bm100403y
  • Kránitz, K, et al., 2016. Effects of aging on wood: a literature review. Wood Science and Technology, 50, 7–22. doi:10.1007/s00226-015-0766-0
  • Kubojima, Y, Okano, T, and Ohta, M, 1998. Vibrational properties of Sitka spruce heat-treated in nitrogen gas. Journal of Wood Science, 44 (1), 73–77. doi:10.1007/BF00521878
  • Li, X, et al., 2011. Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood. Advanced Materials Research, 197-198, 90–95. doi:10.4028/www.scientific.net/AMR.197-198.90
  • Lionetto, F, et al., 2012. Monitoring wood degradation during weathering by cellulose crystallinity. Materials, 5 (10), 1910–1922. doi:10.3390/ma5101910
  • Noguchi, T, Obataya, E, and Ando, K, 2012. Effects of aging on the vibrational properties of wood. Journal of Cultural Heritage, 13 (3), S21–S25. doi:10.1016/j.culher.2012.02.008
  • Obataya, E, 2017. Effects of natural and artificial ageing on the physical and acoustic properties of wood in musical instruments. Journal of Cultural Heritage, 27, S63–S69. doi:10.1016/j.culher.2016.02.011
  • Pfriem, A, 2015. Thermally modified wood for use in musical instruments. Drvna Industrija, 66 (3), 251–253. doi:10.5552/drind.2015.1426
  • Popper, R, Niemz, P, and Eberlein, G, 2005. Untersuchungen zum Sorptions- und Quellungsverhalten von thermisch behandeltem Holz. Holz als Roh- und Werkstoff, 63, 135–148. doi:10.1007/s00107-004-0554-2
  • Rowell, RM, et al., 2009. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Material Science and Engineering, 4 (1–2), 14–22. doi:10.1080/17480270903261339
  • Sproßmann, R, Zauer, M, and Wagenführ, A, 2017. Characterization of acoustic and mechanical properties of common tropical woods used in classical guitars. Results in Physics, 7, 1737–1742. doi:10.1016/j.rinp.2017.05.006
  • Trinh, L, et al., 2015. Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass and Bioenergy, 81, 1–8. doi:10.1016/j.biombioe.2015.05.005
  • Wegst, UGK, 2006. Wood for sound. American Journal of Botany, 93 (10), 1439–1448. doi:10.3732/ajb.93.10.1439
  • Wentzel, M, et al., 2019. Chemical analysis and cellulose crystallinity of thermally modified Eucalyptus nitens wood from open and closed reactor systems using FTIR and X-ray crystallography. European Journal of Wood and Wood Products, 77 (4), 517–525. doi:10.1007/s00107-019-01411-0
  • Yokoyama, M, et al., 2009. Mechanical characteristics of aged Hinoki wood from Japanese historical buildings. Comptes Rendus Physique, 10 (7), 601–611. doi:10.1016/j.crhy.2009.08.009
  • Zauer, M, et al., 2016. Thermal modification of European beech at relatively mild temperatures for the use in electric bass guitars. European Journal of Wood and Wood Products, 74 (1), 43–48. doi:10.1007/s00107-015-0973-2
  • Zhu, LJ., Liu, Y., and Liu, Z., 2016. Effect of high-temperature heat treatment on the acoustic-vibration performance of Picea jezoensis. BioRes, 11 (2), 4921–4934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.