47
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of accelerated aging on compressive response of natural and synthetic core materials: freeze-thaw cycles and UV radiation

, , , &
Pages 253-263 | Received 20 Feb 2023, Accepted 12 Jul 2023, Published online: 21 Jul 2023

References

  • Adhikary, KB, Pang, S, and Staiger, MP, 2009a. Accelerated ultraviolet weathering of recycled polypropylene-sawdust composites. Journal of Thermoplastic Composite Materials, 22, 661–679. doi:10.1177/0892705709096550.
  • Adhikary, KB, Pang, S, and Staiger, MP, 2009b. Effects of the accelerated freeze-thaw cycling on physical and mechanical properties of wood flour-recycled thermoplastic composites. Polymer Composites, 31, 185–194. doi:10.1002/pc.20782.
  • Afiqah, N, Rus, AZM, Zulhafiz, MZ, et al., 2018. Mechanical properties of wood polymer composites (WPCs) after prolonged ultra violet (UV) irradiation exposure. International Journal of Engineering Technology, 7, 258–260.
  • Al Azzawi, W, Epaarachchi, JA, and Leng, J, 2018. Investigation of ultraviolet radiation effects on thermomechanical properties and shape memory behaviour of styrene-based shape memory polymers and its composite. Composites Science and Technology, 165, 266–273. doi:10.1016/j.compscitech.2018.07.001.
  • Alghunaim, NS, 2015. Spectroscopic analysis of PMMA/PVC blends containing CoCl2. Results in Physics, 5, 331–336. doi:10.1016/j.rinp.2015.11.003.
  • Anjos, O, et al., 2014. Effect of density on the compression behaviour of cork. Materials & Design, 53, 1089–1096. doi:10.1016/j.matdes.2013.07.038.
  • Anjos, O, Pereira, H, and Rosa, ME, 2008. Effect of quality, porosity and density on the compression properties of cork. Holz als Roh- und Werkstoff, 66, 295–301. doi:10.1007/s00107-008-0248-2.
  • Arteiro, A, Reis, ALMA, Nóvoa, PJRO, et al., 2013. Low velocity impact and flexural performance of sandwich structures with cork and polymer foam cores. Ciência & Tecnologia dos Materiais, 25, 79–84. doi:10.1016/j.ctmat.2014.03.003.
  • Asefnejad, A, Khorasani, MT, Behnamghader, A, et al., 2011. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. International Journal of Nanomedicine, 6, 2375–2384. doi:10.2147/IJN.S15586.
  • ASTM International, 2022. ASTM C365 standard test method for flatwise compressive properties of sandwich cores.
  • Blaga, A, 1980. Deterioration mechanisms in weathering of plastic materials. Durab Build Mater Components, ASTM Int.
  • Cai, H, et al., 2020. Enhanced hydrophilic and electrophilic properties of polyvinyl chloride (PVC) biofilm carrier. Polymers, 12, 1240. doi:10.3390/polym12061240.
  • Castro, O, Silva, JM, Devezas, T, et al., 2010. Cork agglomerates as an ideal core material in lightweight structures. Materials & Design, 31, 425–432. doi:10.1016/j.matdes.2009.05.039.
  • Chen, J, et al., 2018. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer. IOP Conference Series: Materials Science and Engineering, 292, 012008. doi:10.1088/1757-899X/292/1/012008.
  • Crouvisier-urion, K, et al., 2018. Mechanical properties of agglomerated cork stoppers for sparkling wines : Influence of adhesive and cork particle size. Composite Structures, 203, 789–796. doi:10.1016/j.compstruct.2018.06.116.
  • Davis, P, Tiganis, BE, and Burn, LS, 2004. The effect of photo-oxidative degradation on fracture in ABS pipe resins. Polymer Degradation and Stability, 84, 233–242. doi:10.1016/j.polymdegradstab.2003.10.017.
  • Delpech, MC, and Miranda, GS, 2012. Waterborne polyurethanes: Influence of chain extender in FTIR spectra profiles. Open Engineering, 2, 231–238. doi:10.2478/s13531-011-0060-3.
  • Diab, 2009. Safety data sheet Divinycell H/HP/HT. 1–4.
  • Fiore, V, et al., 2015. A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74–94. doi:10.1016/j.compositesb.2014.12.034.
  • Gaidukovs, S, Kampars, V, Bitenieks, J, et al., 2016. Thermo-mechanical properties of polyurethane modified with graphite oxide and carbon nanotube particles. Integrated Ferroelectrics, 173, 1–11. doi:10.1080/10584587.2016.1182394.
  • Garcia, AR, et al., 2015. The problem of 2,4,6-trichloroanisole in cork planks studied by attenuated total reflection infrared spectroscopy: Proof of concept. Journal of Agricultural and Food Chemistry, 63, 128–135. doi:10.1021/jf503309a.
  • Gardette, JL, Gaumet, S, and Lemaire, J, 1989. Photooxidation of poly(vinyl chloride). 1. A reexamination of the mechanism. Macromolecules, 22, 2576–2581. doi:10.1021/ma00196a005.
  • Ghaemy, M, and Barghamadi, M, 2009. Synthesis and characterization of novel photoactive polyamide derived from substituted fluorene by copper (I) catalyst. Journal of Applied Polymer Science, 114, 3464–3471. doi:10.1002/app.30732.
  • Gibson, LJ, Easterling, KE, and Ashby, MF, 1981. The structure and mechanics of cork. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 377, 99–117. doi:10.1098/rspa.1981.0117.
  • Gil, L, 2009. Cork composites: A review. Materials, 2, 776–789. doi:10.3390/ma2030776.
  • Gomez, J, and Casto, B, 1996. Freeze-thaw durability of composite materials.
  • Greene, JP, 2021. 10 - Bio-based and biodegradable plastics. In Automotive plastics and composites (Norwich, CT: William Andrew Publishing), 149–174.
  • Hachemane, B, et al., 2013. Sandwich composites impact and indentation behaviour study. Composites Part B: Engineering, 51, 1–10. doi:10.1016/j.compositesb.2013.02.014.
  • Hsiao, SH, and Huang, TL, 2002. Synthesis and properties of novel polyamides based on a benzonorbornane dietheramine. Polymer Journal, 34, 225–233. doi:10.1295/polymj.34.225.
  • Joseph, P V., Rabello, MS, Mattoso, LHC, et al., 2002. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 62, 1357–1372. doi:10.1016/S0266-3538(02)00080-5.
  • Knapic, S, et al., 2016. Cork as a building material: a review. European Journal of Wood and Wood Products, 74, 775–791. doi:10.1007/s00107-016-1076-4.
  • Koller, R, Chang, S, and Xi, Y, 2007. Fiber-reinforced polymer bars under freeze-thaw cycles and different loading rates. Journal of Composite Materials, 41, 5–25. doi:10.1177/0021998306063154.
  • Kumar, D, and Jindal, P, 2019. Effect of multi-walled Carbon nanotubes on thermal stability of polyurethane nanocomposites. Materials Research Express, 6, 05336.
  • Lagorce-Tachon, A, Karbowiak, T, Champion, D, et al., 2015. Mechanical properties of cork: effect of hydration. Materials & Design, 82, 148–154. doi:10.1016/j.matdes.2015.05.034.
  • Lebreton, L, and Andrady, A, 2019. Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5, 1–11. doi:10.1057/s41599-018-0212-7.
  • Lebreton, L, Van Der Zwet, J, Damsteeg, JW, et al., 2017. River plastic emissions to the world’s oceans. Nature Communications, 8, 1–10. doi:10.1038/ncomms15611.
  • Li, X, and Chen, D, 2008. Synthesis and characterization of aromatic/aliphatic co-polyureas. Journal of Applied Polymer Science, 109, 897–902. doi:10.1002/app.24913.
  • Li, H, Lei, X, Wu, Y, et al., 2019. Study of the discoloration behaviour of teak wood (Tectona grandis Linn. Fil.) caused by simulated sunlight. Wood Research, 64, 625–636.
  • Lipp-Symonowicz, B, Sztajnowski, S, and Kardas, I, 2006. Influence of UV radiation on the mechanical properties of polyamide and polypropylene fibres in aspect of their restructuring. Autex Research Journal, 6, 196–203.
  • Liu, Y, Liu, Y, Tan, H, et al., 2013. Structural evolution and degradation mechanism of Vectran® fibers upon exposure to UV-radiation. Polymer Degradation and Stability, 98, 1744–1753. doi:10.1016/j.polymdegradstab.2013.05.023.
  • Lundin, T, Falk, RH, and Felton, C, 2001. Accelerated weathering of natural fiber-thermoplastic composites : effects of ultraviolet exposure on bending strength and stiffness. In 6th Int Conf Woodfiber-Plastic Compos 87–94.
  • Mahzan, S, Fitri, M, and Zaleha, M, 2017. UV radiation effect towards mechanical properties of natural fibre reinforced composite material: a review. IOP Conference Series: Materials Science and Engineering, 165, doi:10.1088/1757-899X/165/1/012021.
  • Mak, K, and Fam, A, 2019. Freeze-thaw cycling effect on tensile properties of unidirectional flax fiber reinforced polymers. Composites Part B: Engineering, 174, 106960. doi:10.1016/j.compositesb.2019.106960.
  • Mancuso, A, Pitarresi, G, and Tumino, D, 2015. Mechanical behaviour of a green sandwich made of flax reinforced polymer facings and cork core. Procedia Engineering, 109, 144–153. doi:10.1016/j.proeng.2015.06.225.
  • Noh, Y, Odimayomi, T, Teimouri Sendesi, SM, et al., 2022. Environmental and human health risks of plastic composites can be reduced by optimizing manufacturing conditions. Journal of Cleaner Production, 356, 131803. doi:10.1016/j.jclepro.2022.131803.
  • Park, EJ, Park, BC, Kim, YJ, et al., 2018. Elimination and substitution compete during amination of poly(vinyl chloride) with ehtylenediamine: XPS analysis and approach of active site index. Macromolecular Research, 26, 913–923. doi:10.1007/s13233-018-6123-z.
  • Passauer, L, Prieto, J, Müller, M, et al., 2015. Novel color stabilization concepts for decorative surfaces of native dark wood and thermally modified timber. Progress in Organic Coatings, 89, 314–322. doi:10.1016/j.porgcoat.2015.06.017.
  • Pereira, H, 2015. The rationale behind cork properties: A review of structure and chemistry. BioResources, 10, 1–23. doi:10.15376/biores.10.3.Pereira.
  • Petroudy, SRD, 2017. 3 - Physical and mechanical properties of natural fibers. In M. Fan and F. Fu (eds.), Advanced high strength natural fibre composites in construction (Amsterdam, The Netherland: Woodhead Publishing Elsevier Ltd), 59–83. doi:10.1016/B978-0-08-100411-1.00003-0.
  • Petrovic, Z.S., et al., 2000. Structure and properties of polyurethane–silica nanocomposites. Journal of Applied Polymer Science, 76, 133–151. doi:10.1002/(SICI)1097-4628(20000411)76:2.
  • Redjala, S, Aït Hocine, N, Ferhoum, R, et al., 2020. UV aging effects on polycarbonate properties. Journal of Failure Analysis and Prevention, 20, 1907–1916. doi:10.1007/s11668-020-01002-9.
  • Reis, L, and Silva, A, 2009. Mechanical behavior of sandwich structures using natural cork agglomerates as core materials. Journal of Sandwich Structures & Materials, 11, 487–500. doi:10.1177/1099636209104523.
  • Rosa, ME, and Fortes, MA, 1988a. Rate effects on the compression and recovery of dimensions of cork. Journal of Materials Science, 23, 879–885. doi:10.1007/BF01153983.
  • Rosa, ME, and Fortes, MA, 1988b. Temperature-induced alterations of the structure and mechanical properties of cork. Materials Science and Engineering, 100, 69–78. doi:10.1016/0025-5416(88)90240-6.
  • Rosa, ME, and Fortes, MA, 1993. Water absorption by cork. Wood Fiber Science, 25, 339–348.
  • Rosa, ME, Pereira, H, and Fortes, MA, 1990. Effects of Hot water treatment on the structure and properties of cork. Wood Fiber Science, 22, 149–164.
  • Sands, JM, Fink, BK, McKnight, SH, et al., 2001. Environmental issues for polymer matrix composites and structural adhesives. Clean Products and Processes, 2, 0228–0235. doi:10.1007/s100980000089.
  • Sergi, C, Sarasini, F, Fiore, V, et al., 2021. The effects of water absorption and salt fog exposure on agglomerated cork compressive response. European Journal of Wood and Wood Products, 80 (1), 101–114. doi:10.1007/s00107-021-01754-7.
  • Shokrieh, MM, and Bayat, A, 2007. Effects of ultraviolet radiation on mechanical properties of glass/polyester composites. Journal of Composite Materials, 41, 2443–2455. doi:10.1177/0021998307075441.
  • Silva, SP, et al., 2005. Cork: properties, capabilities and applications. International Materials Reviews, 50 (6), 345–365. doi:10.1179/174328005X41168.
  • Silva, P, et al., 2016. Effects of different environmental conditions on the mechanical characteristics of a structural epoxy. Composites Part B: Engineering, 88, 55–63. doi:10.1016/j.compositesb.2015.10.036.
  • Soares, B, Reis, L, and Silva, A, 2008. Testing of sandwich structures with cork agglomerate cores. In: Eighth Int conf sandw struct (ICSS 8), Porto 451–462.
  • Souza, JR, et al., 2019. Cross-linked lignin coatings produced by UV light and SF6 plasma treatments. Progress in Organic Coatings, 128, 82–89. doi:10.1016/j.porgcoat.2018.12.017.
  • Xu, T, Li, G, and Pang, SS, 2011. Effects of ultraviolet radiation on morphology and thermo-mechanical properties of shape memory polymer based syntactic foam. Composites Part A: Applied Science and Manufacturing, 42, 1525–1533. doi:10.1016/j.compositesa.2011.07.005.
  • Yakimets, I, Lai, D, and Guigon, M, 2004. Effect of photo-oxidation cracks on behaviour of thick polypropylene samples. Polymer Degradation and Stability, 86, 59–67. https://doi.org/10.1016/j.polymdegradstab.2004.01.013.
  • Zenkert, D., 1997. The handbook of sandwich construction. (Cradley Heath, West Midlands: Engineering Materials Advisory Services Ltd).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.