201
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Delignified wood biocomposites as sustainable and transparent materials for passive cooling applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 291-301 | Received 01 Apr 2023, Accepted 20 Jul 2023, Published online: 31 Jul 2023

References

  • Abdulqader, A.A., Suliman, H.H., and Dawod, N.A., 2021. Some wood properties of Melia Azedarach L. trees grown in Duhok Province. Iraqi Journal of Agricultural Sciences, 52 (3), 774–782.. doi:10.36103/ijas.v52i3.1369
  • Arévalo, R., and Hernández, R.E., 2001. Influence of moisture sorption on swelling of mahogany (Swietenia macrophylla king). Wood. Holzforschung, 55 (6), 590–594.. doi:10.1515/HF.2001.096
  • Barański, J., et al., 2021. Wood moisture-content measurement accuracy of impregnated and nonimpregnated wood. Sensors (Basel), 21 (21), 7033. doi:10.3390/s21217033.
  • Běťák, A., et al., 2023. Comparison of wood moisture meters operating on different principles of measurement. Buildings, 13 (2), 531. doi:10.3390/buildings13020531.
  • Bisht, P., Pandey, K.K., and Srinivas, G., 2022. Optical properties of transparent wood composites prepared using transverse sections of poplar wood. Holzforschung, 76 (7), 658–667. doi:10.1515/hf-2021-0242.
  • Chen, H., et al., 2019. Thickness dependence of optical transmittance of transparent wood: chemical modification effects. ACS Applied Materials and Interfaces, 11 (38), 35451–35457. doi:10.1021/acsami.9b11816.
  • Dietsch, P., et al., 2015. Methods to determine wood moisture content and their applicability in monitoring concepts. Journal of Civil Structural Health Monitoring, 5 (2), 115–127. doi:10.1007/s13349-014-0082-7.
  • Ding, L., et al., 2022. Preparation and properties of hydrophobic and transparent wood. Journal of Bioresources and Bioproducts, 7 (4), 295–305. doi:10.1016/j.jobab.2022.02.001.
  • Febriansyah, O., 2022. Sifat Fisika dan Mekanika Kayu Sungkai (Peronema Canescens Jack.) pada Kedudukan Aksial dan Radial yang Tumbuh di Hutan Rakyat, Kulonprogo [Thesis, Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/penelitian/detail/208519.
  • Forest Products Laboratory. 2022a. Mahogany. In: W.C. Wiemann, ed. Wood Handbook: wood as an engineering material. U.S. Department of Agriculture, 2-28–2-29.
  • Forest Products Laboratory. 2022b. Maple. In: W.C. Wiemann, ed. Wood Handbook: wood as an engineering material. U.S. Department of Agriculture, 2-8–2-9.
  • Foster, K.E.O., et al., 2021. Mechanics, optics, and thermodynamics of water transport in chemically modified transparent wood composites. Composites Science and Technology, 208, 108737. doi:10.1016/j.compscitech.2021.108737.
  • Gastines, M., de Correa, É, and Pattini, A., 2019. Heat transfer through window frames in EnergyPlus: model evaluation and improvement. Advances in Building Energy Research, 13 (1), 138–155. doi:10.1080/17512549.2017.1421098.
  • Ghosh, A., 2023. Diffuse transmission dominant smart and advanced windows for less energy-hungry building: A review. Journal of Building Engineering, 64, 105604. doi:10.1016/j.jobe.2022.105604.
  • Grzybek, J., et al., 2023. Impregnation of Norway spruce with low melting-point binary fatty acid as a phase-change material. Wood Material Science and Engineering, 1–10. doi:10.1080/17480272.2023.2186266.
  • Hee, W.J., et al., 2015. The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42, 323–343. doi:10.1016/j.rser.2014.09.020.
  • Hendrati, R.L., and Nurrohmah, S.H., 2018. Quality of genetically-improved Acacia auriculiformis for renewable short-rotation wood-energy. Jurnal Manajemen Hutan Tropika, 24 (3), 136. doi:10.7226/jtfm.24.3.136.
  • Hermawan Prianto, E., and Setyowati, E., 2015. The difference of thermal performance between houses with wooden walls and exposed brick walls in tropical coasts. Procedia Environmental Sciences, 23, 168–174. doi:10.1016/j.proenv.2015.01.026.
  • Heydari, A., Sadati, S.E., and Gharib, M.R., 2021. Effects of different window configurations on energy consumption in building: optimization and economic analysis. Journal of Building Engineering, 35, 102099. doi:10.1016/j.jobe.2020.102099.
  • Hu, X., et al., 2022. Sonochemically-coated transparent wood with ZnO: passive radiative cooling materials for energy saving applications. Renewable Energy, 193, 398–406. doi:10.1016/j.renene.2022.05.008.
  • Jungstedt, E., et al., 2020. Mechanical properties of transparent high strength biocomposites from delignified wood veneer. Composites Part A: Applied Science and Manufacturing, 133, 105853. doi:10.1016/j.compositesa.2020.105853.
  • Kuka, E., et al., 2023. Environmental performance of combined treated wood. Wood Material Science and Engineering, 18 (1), 88–96. doi:10.1080/17480272.2022.2153737.
  • Kumar, A., Jyske, T., and Petrič, M., 2021. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Advanced Sustainable Systems, 5 (5), 2000251. doi:10.1002/adsu.202000251.
  • Lahtela, V., and Kärki, T., 2016. Effects of impregnation and heat treatment on the physical and mechanical properties of Scots pine (Pinus sylvestris) wood. Wood Material Science and Engineering, 11 (4), 217–227. doi:10.1080/17480272.2014.971428.
  • Li, Y., et al., 2016. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules, 17 (4), 1358–1364. doi:10.1021/acs.biomac.6b00145.
  • Li, Y., et al., 2017. Lignin-Retaining transparent wood. ChemSusChem, 10 (17), 3445–3451. doi:10.1002/cssc.201701089.
  • Li, Y., et al., 2018a. Optically transparent wood: recent progress, opportunities, and challenges. Advanced Optical Materials, 6 (14), 1800059. doi:10.1002/adom.201800059.
  • Li, Y., et al., 2018b. Transparent wood for functional and structural applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2112), 20170182. doi:10.1098/rsta.2017.0182.
  • Li, J., et al., 2021. In situ wood delignification toward sustainable applications. Accounts of Materials Research, 2 (8), 606–620. doi:10.1021/accountsmr.1c00075.
  • Meng, Y., et al., 2020. Form-stable phase change materials from mesoporous balsa after selective removal of lignin. Composites Part B: Engineering, 199, 108296. doi:10.1016/j.compositesb.2020.108296.
  • Mi, R., et al., 2020a. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 11 (1), 1. doi:10.1038/s41467-020-17513-w.
  • Mi, R., et al., 2020b. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Advanced Functional Materials, 30 (1), 1907511. doi:10.1002/adfm.201907511.
  • More, A., Elder, T., and Jiang, Z., 2021. A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung, 75 (9), 806–823. doi:10.1515/hf-2020-0165.
  • Mousavi, S.R., et al., 2022. A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles. Polymer Testing, 112, 107645. doi:10.1016/j.polymertesting.2022.107645.
  • Nourozi, B., et al., 2020. Heat transfer model for energy-active windows – an evaluation of efficient reuse of waste heat in buildings. Renewable Energy, 162, 2318–2329. doi:10.1016/j.renene.2020.10.043.
  • Nunes, S.C., et al., 2019. Sustainable dual-mode smart windows for energy-efficient buildings. ACS Applied Energy Materials, 2 (3), 1951–1960. doi:10.1021/acsaem.8b02041.
  • Ou, R., et al., 2014. Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: effect of removal of wood cell wall composition. Materials and Design, 58, 339–345. doi:10.1016/j.matdes.2014.02.018.
  • Ozel, M., and Ozel, C., 2020. Effect of window-to-wall-area ratio on thermal performance of building wall materials in Elazığ, Turkey. PLoS One, 15 (9), e0237797. doi:10.1371/journal.pone.0237797.
  • Popovic, J., et al., 2022. Light transmittance of mahogany wood treated with 20% hydrogen peroxide solution. BioResources, 17 (4), 5919–5935. doi:10.15376/biores.17.4.5919-5935.
  • Salsabila, S., 2022. Variasi Radial dan Aksial Sifat Anatomi dan Berat Jenis Kayu Sungkai (Peronema canescens Jack) dari Lebak, Banten [Thesus, Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/penelitian/detail/219923.
  • Smith, C.S., 1951. Moisture content and shrinkage of hardwoods. Forest Products Journal, 51 (10), 465–474.
  • Van Duong, D., and Matsumura, J., 2018. Within-stem variations in mechanical properties of Melia azedarach planted in northern Vietnam. Journal of Wood Science, 64 (4), 4. doi:10.1007/s10086-018-1725-9.
  • Wan, C., et al., 2021. A brief review of transparent wood: synthetic strategy, functionalization and applications. Current Organic Synthesis, 18 (7), 615–623. doi:10.2174/1570179418666210614141032.
  • Wang, X., et al., 2018. Large-Size transparent wood for energy-saving building applications. ChemSusChem, 11 (23), 4086–4093. doi:10.1002/cssc.201801826.
  • Wu, J., et al., 2019a. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Composites Part A: Applied Science and Manufacturing, 117, 324–331. doi:10.1016/j.compositesa.2018.12.004.
  • Wu, Y., et al., 2019b. Effect of H2O2 bleaching treatment on the properties of finished transparent wood. Polymers, 11 (5), 5. doi:10.3390/polym11050776.
  • Wu, Y., et al., 2020. Study on the colorimetry properties of transparent wood prepared from six wood species. ACS Omega, 5 (4), 1782–1788. doi:10.1021/acsomega.9b02498.
  • Wu, J., et al., 2023. Transparent, UV blocking, and strong wood-based biocomposites with isotropic optical and mechanical properties. Wood Material Science and Engineering, doi:10.1080/17480272.2023.2165450.
  • Xia, Q., et al., 2021. Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 7 (5), eabd7342. doi:10.1126/sciadv.abd7342.
  • Yu, Z., et al., 2017. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. Journal of Materials Chemistry A, 5 (13), 6019–6024. doi:10.1039/C7TA00261K.
  • Yue, D., Fu, G., and Jin, Z., 2021. Transparent wood prepared by polymer impregnation of rubber wood (Hevea brasiliensis Muell. Arg). BioResources, 16 (2), 2.
  • Zhu, M., et al., 2016a. Highly anisotropic, highly transparent wood composites. Advanced Materials, 28 (35), 7563–7563. doi:10.1002/adma.20160408.
  • Zhu, M., et al., 2016b. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy, 26, 332–339. doi:10.1016/j.nanoen.2016.05.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.