162
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Decay resistance and weathering properties of thermally-modified amazon woods – Parkia pendula (Willd.) and Simarouba amara (Aubl.)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 327-333 | Received 02 May 2023, Accepted 27 Jul 2023, Published online: 18 Aug 2023

References

  • American Society for Testing and Materials – ASTM, 2009. ASTM D 2244 – Standard practice for calculation of color tolerances and color differences from instrumentally measured color coordinates. Philadelphia, PA, USA.
  • Ayata, U., Akacay, C., and Esteves, B., 2017. Determination of decay resistance against Pleurotus ostreatus and Coniophora puteana fungus of heat-treated Scotch pine, oak and beech wood species. Maderas: Ciencia y Tecnologia, 19 (3), 309–316.
  • Barreto, C.C.K., and Pastore, T.C.M., 2009. Resistência ao intemperismo artificial de quatro madeiras tropicais: O efeito dos extrativos. Ciência Florestal, 19 (1), 23–30. doi: 10.5902/19805098416
  • Batista, F.G., et al., 2020. Resistência natural da madeira de seis espécies à Nasutitermes corniger Motsch. em condição de campo. Madera y Bosques, 26 (2), 1–9. doi: 10.21829/myb.2020.2622017
  • Carvalho, D.E., et al., 2019. Effect of thermal modification in the natural resistance of Eucalyptus grandis and Pinus taeda woods. Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences, 14 (1).
  • Castro, V.G., et al., 2018. Deterioração e preservação da madeira. Mossoró: EdUFERSA.
  • Chang, T.C., et al., 2010. Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polymer Degradation and Stability, 95 (9), 1518–1522. doi: 10.1016/j.polymdegradstab.2010.06.012
  • CIE publication No. 15.2, 1986. CIE Colorimetry (2nd Ed). Paris: Central Bureau of the CIE.
  • Cividini, R., et al., 2007. White beech: a tricky problem in the drying process. ISCHP, 7, 135–140.
  • Corassa, J.D.N., et al., 2019. Durabilidade Natural De Dez Madeiras Amazônicas Sob Condições De Campo. Nativa, 7 (6), 758. doi: 10.31413/nativa.v7i6.7460
  • Delucis, R., et al., 2016. Color of two eucalypts woods exposed to natural weathering in three different environments. Maderas: Ciencia y Tecnologia, 18 (1), 133–142.
  • Delucis, R., Beltrame, R., and Gatto, D.A., 2019. Discolouration of heat-treated fast-growing eucalyptus wood exposed to natural weathering. Cellulose Chemistry and Technology, 53 (7-8), 635–641. doi: 10.35812/CelluloseChemTechnol.2019.53.62
  • Eaton, R.A., and Hale, D.C.M., 1993. Wood: decay, pests and protection. Chapman and Hall Ltd.
  • Esteves, B.M., and Pereira, H.M., 2009. Wood modification by heat treatment: a review. BioResources, 4 (1), 370–404. doi: 10.15376/biores.4.1.Esteves
  • Evans, P.D., Thay, P.D., and Schmalzi, K.J., 1996. Degradation of wood surfaces during natural weathering. Effects on lignin and cellulose and on the adhesion of acrylic latex primers. Wood Science and Technology, 30 (6), 411–422. doi: 10.1007/BF00244437
  • Faria, D.L., et al., 2020. Resistência natural da madeira tratada de Hevea brasiliensis em ensaios de deterioração de campo. Revista Ibero-Americana de Ciências Ambientais, 11 (5), 74–82. doi: 10.6008/CBPC2179-6858.2020.005.0008
  • Forest Products Laboratory – FPL, 2010. Wood handbook: wood as an engineering material. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 508 p.
  • Gallon, R., et al., 2014. Resistência à deterioração de madeiras amazônicas tratadas por imersão simples em Óleo queimado. Nativa, 2 (1), 48–52. doi: 10.14583/2318-7670.v02n01a09
  • Gouveia, F.N., 2008. Estabilização Colorimétrica De Madeiras. p. 143.
  • Griebeler, C., et al., 2018. Reduction of the surface colour variability of thermally modified Eucalyptus globulus wood by colour pre-grading and homogeneity thermal treatment. European Journal of Wood and Wood Products, 76 (5), 1495–1504. doi: 10.1007/s00107-018-1310-3
  • Kamdem, D.P., Pizzi, A., and Jermannaud, A., 2002. Durability of heat-treated wood. Holz als Roh- und Werkstoff, 60 (1), 1–6. doi: 10.1007/s00107-001-0261-1
  • Keržič, E., and Humar, M., 2021. Studies on the material resistance and moisture dynamics of wood after artificial and natural weathering. Wood Material Science and Engineering, 0 (0), 1–7.
  • Lee, S.H., et al., 2018. Thermal treatment of wood using vegetable oils: a review. Construction and Building Materials, 181, 408–419. doi: 10.1016/j.conbuildmat.2018.06.058
  • Lelis, A., 2001. Manual de Biodeterioração de madeiras em edificações. São Paulo. Instituto de Pesquisas Tecnológicas do Estado de São Paulo/IPT. Divisão de Produtos Florestais.
  • Lepage, E.S., 1970. Método sugerido pela IUFRO para ensaios de campo com estacas de madeira. Preservação de madeiras, 1, 205–216.
  • Li, T., et al., 2017. Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Construction and Building Materials, 144, 671–676. doi: 10.1016/j.conbuildmat.2017.03.218
  • Mariano, L.G., et al., 2020. Identification and control of wood-deteriorating fungi. Arquivos do Instituto Biológico, 87.
  • Martins, S.A., et al., 2011. Envelhecimento artificial acelerado por radiação ultravioleta de madeiras de Eucalyptus benthamii e Pinus caribaea var. hondurensis. Floresta, 41 (1), 87–96. doi: 10.5380/rf.v41i1.21185
  • Matsuo, H., and Nishimoto, K., 1973. The consumption of the fungus-infected wood. Kyoto University Research Information Repository, 1–9.
  • Melo, R.R., et al., 2010. Durabilidade natural da madeira de três espécies florestais em ensaios de campo. Ciência Florestal, 20 (2), 357–365. doi: 10.5902/198050981858
  • Modes, K.S., et al., 2012. Resistência natural das madeiras de sete espécies florestais ao fungo Pycnoporus sanguineus causador da podridão-branca. Cerne, 18 (3), 407–411. doi: 10.1590/S0104-77602012000300007
  • Moore, A.K., and Owen, N.L., 2001. Infrared spectroscopic studies of solid wood. Applied Spectroscopy Reviews, 36 (1), 65–86. doi: 10.1081/ASR-100103090
  • Paes, J.B., et al., 2015. Resistencia de maderas tratadas térmicamente al ataque de Nasutitermes corniger en ensayos de preferencia de alimento. Madera y Bosques, 21, 157–164. doi: 10.21829/myb.2015.211439
  • Pandey, K.K., 2005. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability, 87 (2), 375–379. doi: 10.1016/j.polymdegradstab.2004.09.007
  • Park, Y., et al., 2018. Evaluation of deterioration of Larix kaempferi wood heat-treated by superheated steam through field decay test for 12 months. Journal of the Korean Wood Science and Technology, 46 (5), 497–510. doi: 10.5658/WOOD.2018.46.5.497
  • Quintilhan, M.T., et al., 2018. Deterioração da madeira de Eucalyptus e Corymbia em ensaio de campo. Revista Ciência da Madeira - RCM, 9 (2), 82–94. doi: 10.12953/2177-6830/rcm.v9n2p82-94
  • Rocha, A.F., et al., 2015. Variações microclimáticas de áreas urbanas em biomas no estado de Mato Grosso: Cuiabá e Sinop. Revista Gestão & Sustentabilidade Ambiental, 4, 246–257. doi: 10.19177/rgsa.v4e02015246-257
  • Teles, R.F., and Costa, A.F., 2014. Influência do Intemperismo Acelerado nas Propriedades Colorimétricas da Madeira de Angelim Pedra. Nativa, 2 (2), 65–70. doi: 10.14583/2318-7670.v02n02a02
  • Vivian, M.A., et al., 2014. Resistência biológica da madeira tratada de duas espécies de Eucalyptus em ensaio de campo. Pesquisa Florestal Brasileira, 34(80). doi: 10.4336/2014.pfb.34.80.545
  • Weiland, J.J., and Guyonnet, R., 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh- und Werkstoff, 61 (3), 216–220. doi: 10.1007/s00107-003-0364-y
  • Welzbacher, C.R., and Rapp, A.O., 2007. Durability of thermally modified timber from industrial-scale processes in different use classes: results from laboratory and field tests. Wood Material Science and Engineering, 2 (1), 4–14. doi: 10.1080/17480270701267504
  • Žlahtič M, Humar M. (2016) Influence of artificial and natural weathering on the hydrophobicity and surface properties of wood. BioResources, 11(2):4964–4989. doi: 10.15376/biores.11.2.4964-4989

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.