153
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Preparation of hydrophobic coating by phytic acid-based hybrid complexes to enhance the surface property of wood

, , , , , & show all
Pages 346-356 | Received 17 May 2023, Accepted 27 Jul 2023, Published online: 07 Aug 2023

References

  • Chang, H., Tu, K., Wang, X., et al., 2015. Facile preparation of stable superhydrophobic coatings on wood surfaces using silica-polymer nanocomposites. Bioresources, 10 (2), 2585–2596.
  • Chen, L.S., Fei, B.H., Ma, X.X., et al., 2019. Effects of hygrothermal environment in cooling towers on the chemical composition of bamboo grid packing. Forests, 10, 274. doi:10.3390/f10030274.
  • Chen, M.L., Weng, Y., Semple, K., et al., 2021. Sustainability and innovation of bamboo winding composite pipe products. Renewable and Sustainable Energy Reviews, 144 (16), 110976. doi:10.1016/j.rser.2021.110976.
  • Chen, M.L., Ye, L., Li, H., et al., 2020. Flexural strength and ductility of moso bamboo. Construction and Building Materials, 246, 118418. doi:10.1016/j.conbuildmat.2020.118418.
  • Dong, Y., Liu, X., Liu, J., et al., 2021. Evaluation of anti-mold, termite resistance and physical-mechanical properties of bamboo cross-linking modified by polycarboxylic acids. Construction and Building Materials, 272, 121953. doi:10.1016/j.conbuildmat.2020.121953.
  • Fu, C., Gu, L., Zeng, Z., et al., 2019. One-step transformation of metal meshes to robust superhydrophobic and superoleophilic meshes for highly efficient oil spill cleanup and oil/water separation. ACS Applied Materials & Interfaces, 12 (1), 1850–1857. doi:10.1021/acsami.9b17052.
  • Gao, Z., Ma, M.L., Zhai, X., et al., 2015. Improvement of chemical stability and durability of superhydrophobic wood surface via a film of Tio2 coated Caco3 micro-/nano-composite particles. Rsc Advances, 5 (79), 63978–63984. doi:10.1039/C5RA04000K.
  • Gao, S., Qi, J., Qi, P., et al., 2023. Unprecedented nonflammable organic adhesives leading to fireproof wood products. ACS Applied Materials & Interfaces, 15 (6), 8609–8616. doi:10.1021/acsami.2c19072.
  • Gershinsky, G., Nanikashvili, P., Elazari, R., et al., 2018. From the sea to hydrobromic acid: polydopamine layer as corrosion protective layer on platinum electrocatalyst, ACS Appl Energy Mater, 1 (9), 4678–4685.
  • Gong, X., Zhang, L.G., He, S., et al., 2020. Rewritable superhydrophobic coatings fabricated using water-soluble polyvinyl alcohol.Materials &. Design, 196, 109112.
  • Li, J.P., Lu, Y., Wu, Z.X., et al., 2016. Durable, self-cleaning and superhydrophobic bamboo timber surfaces based on tio2 films combined with fluoroalkylsilane. Ceramics International, 42 (8), 9621–9629. doi:10.1016/j.ceramint.2016.03.047.
  • Lin, Q.Q., Jiang, P., Ren, S.H., et al., 2022. Advanced functional materials based on bamboo cellulose fibers with different crystal structures. Composites Part A: Applied Science and Manufacturing, 154, 106758. doi:10.1016/j.compositesa.2021.106758.
  • Liu, F., Wang, S., Zhang, M., et al., 2013. Improvement of mechanical robustness of the superhydrophobic wood surface by coat-ing PVA/SiO2 composite polymer. Applied Surface Science, 280, 686–692.
  • Liu, X.R., Xiao, X., Zhang, T., et al., 2022. Construction of thorough cross-linked networks in soybean meal adhesive system by biomimetic boronic acid-anchored cellulose nanofibril for multifunctionality of high-performance, mildew resistance, anti-bacterial, and flame resistance. Industrial Crops and Products, 180, 114791. doi:10.1016/j.indcrop.2022.114791.
  • Lu, Y., Wu, Y., Yang, J., et al., 2021. Gentle fabrication of colorful superhydrophobic bamboo based on metal-organic framework. Journal of Colloid and Interface Science, 593, 41–50. doi:10.1016/j.jcis.2021.03.022.
  • Ou, X., Cai, J., Tian, J., et al., 2020. Superamphiphobic surfaces with self-cleaning and antifouling properties by functionalized chitin nanocrystals. ACS Sustainable Chemistry & Engineering, 17 (8), 6690–6699.
  • Qin, F., Yao, W., Liu, Y., et al., 2023. Polyethyleneimine functionalized cellulose-rich agroforestry residues for removing perfluorooctanoic acid: adsorption performance and mechanism. Cellulose, 30 (6), 3653–3666. doi:10.1007/s10570-023-05090-2.
  • Shao, C., Jiang, M., Zhang, J., et al., 2023. Construction of a superhydrophobic wood surface coating by layer-by-layer assembly: Self-adhesive properties of polydopamine. Applied Surface Science, 609, 155259. doi:10.1016/j.apsusc.2022.155259.
  • Song, Y., Liu, Y., Qi, T., et al., 2018. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angewandte Chemie, 57(42), 13838–13842.
  • Wang, S., Shi, J., Liu, C., et al., 2011. Fabrication of a superhydro-phobic surface on a wood substrate. Applied Surface Science, 57 (22), 9362–9365.
  • Wang, S., Wang, C., Liu, C., et al., 2012. Fabrication of superhydro-phobic spherical-like α-FeOOH films on the wood surface by a hydrothermal method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 403, 29–34. doi:10.1016/j.colsurfa.2012.03.051.
  • Wu, Y., Jia, S., Shuang, W., et al., 2017. A facile and novel emulsion for efficient and convenient fabrication of durable superhydrophobic materials. Chemical Engineering Journal, 328, 186–196.
  • Wu, X., Kong, Z., Yao, X., et al., 2023. Transparent wood with self-cleaning properties for next-generation smart photovoltaic panels. Applied Surface Science, 613, 155927. doi:10.1016/j.apsusc.2022.155927.
  • Xie, X.Q., Yuan, T.C., Yao, Y., et al., 2023. Phytic acid-based hybrid complexes for improving the interfacial property and mildew-resistance of heat-treated bamboo. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 659, 130749. doi:10.1016/j.colsurfa.2022.130749.
  • Xu, G.Q., Wang, L.H., Liu, J.L., et al., 2013. Wu FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi. ACS Applied Materials And Interfaces, 12 (1), 1850–1857.
  • Yuan, T.C., Liu, X.R., Dong, Y., et al., 2021. Determination of the effects of superheated steam on microstructure and micromechanical properties of bamboo cell walls using quasi-static nanoindentation. Forests, 12, 1742. doi:10.3390/f12121742.
  • Yuan, T.C., Yin, X., Huang, Y., et al., 2022. Hydrothermal treatment of bamboo and its effect on nano-mechanic and anti-mildew property. Journal of Cleaner Production, 380, 135189. doi:10.1016/j.jclepro.2022.135189.
  • Zhang, J., 2021. One-step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy. Polymers for Advanced Technologies, 32 (3), doi:10.1002/pat.5165.
  • Zhang, T., Yuan, T.C., Xiao, X., et al., 2022. Transparent and shape-memory cellulose paper reinforced by vitrimer polymer for efficient light management and sustainability. Cellulose, 29 (16), 8781–8795. doi:10.1007/s10570-022-04797-y.
  • Zhou, C.L., Chen, Z.D., Hao, Y., et al., 2017. Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Applied Materials & Interfaces, 9 (10), 9184–9194. doi:10.1021/acsami.7b00412.
  • Zhu, W., Han, M., Kim, D., et al., 2023a. Highly catalytic and durable nanocellulose fibers-based nanoporous membrane film for efficient organic pollutant degradation. Journal of Water Process Engineering, 53, 103620. doi:10.1016/j.jwpe.2023.103620.
  • Zhu, W., Kim, D., Han, M., et al., 2023b. Fibrous cellulose nanoarchitectonics on N-doped carbon-based metal-free catalytic nanofilter for highly efficient advanced oxidation process. Chemical Engineering Journal, 460, 141593. doi:10.1016/j.cej.2023.141593.
  • Zhu, Y., Zhu, W., Li, Z., et al., 2023c. Enhancement of wood coating properties by adding silica sol to UV-curable waterborne acrylics. Forests, 14 (2), 335. doi:10.3390/f14020335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.