155
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An X-ray CT assessment of fungal growth in spruce, poplar and thermally-modified poplar

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 357-365 | Received 07 Jun 2023, Accepted 29 Jul 2023, Published online: 08 Aug 2023

References

  • Altgen, M., and Militz, H., 2016. Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system. Holzforschung, 70 (10), 971–979. doi:10.1515/hf-2015-0235.
  • Ayanleye, S., et al., 2022. Durability and protection of mass timber structures: A review. Journal of Building Engineering, 46, 103731. doi:10.1016/j.jobe.2021.103731.
  • Balatinecz J, Mertens P, De Boever L, Yukun H, Jin J, Van Acker J (2014). Properties, processing and utilization, Chapter 10. In: J.G. Isebrands and J. Richardson, eds. Poplars and willows: trees for society and the environment, Rome, Italy: CABI (co-publisher: FAO), 634.
  • Bao, M., et al., 2017. Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). Journal of Wood Science, 63, 591–605. doi:10.1007/s10086-017-1661-0.
  • Bekhta, P., and Niemz, P., 2003. Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood. Holzforschung, 57 (5), 539–546.
  • Bollmus, S., et al., 2018. Towards durability classification of preservative treated wood – first attempts using different European standards. International Research Group on Wood Preservation, IRG/WP 18-20638.
  • Bravery, A. (1975). Micromorphology of decay in preservative treated wood. In: Liese, W., ed. Biological transformation of wood by microorganisms: proceedings of the sessions on wood products pathology. Berlin: Springer-Verlag, 129–142.
  • Bravery, A., 1978. A miniaturised wood-block test for the rapid evaluation of wood preservative fungicides. In: Screening Techniques for Potential Wood Preservative Chemicals: Proceedings of a Special Seminar Held in Association with the 10th Annual Meeting of the IRG, 57–65. IRG-WP, Peebles, UK.
  • Brischke, C., and Alfredsen, G., 2020. Wood-water relationships and their role for wood susceptibility to fungal decay. Applied Microbiology and Biotechnology, 104, 3781–3795. doi:10.1007/s00253-020-10479-1.
  • Cappellazzi, J., et al., 2020. Potential for decay in mass timber elements: a review of the risks and identifying possible solutions. Wood Material Science & Engineering, 15 (6), 351–360. doi:10.1080/17480272.2020.1720804.
  • CEN, 2013. Durability of wood and wood-based products – use classes: Definitions, application to solid wood and wood-based products. European Committee for Standardization, Brussels. EN 335.
  • CEN, 2016. Durability of wood and wood-based products – testing and classification of the durability to biological agents of wood and wood-based materials; European Committee for Standardization, Brussels. EN 350.
  • CEN, 2021. Durability of wood and wood-based products – test method against wood destroying basidiomycetes – Part 2: Assessment of inherent or enhanced durability. European Committee for Standardization, Brussels. EN 113-2.
  • Deklerck, V., et al., 2020. Assessing the natural durability of xylarium specimens: mini-block testing and chemical fingerprinting for small-sized samples. Wood Science and Technology, 54 (4), 981–1000. doi:10.1007/s00226-020-01186-1.
  • De Ligne, L., et al., 2021. Unraveling the natural durability of wood: revealing the impact of decay-influencing characteristics other than fungicidal components. Holzforschung, 75 (4), 368–378. doi:10.1515/hf-2020-0109.
  • De Ligne, L., et al., 2022. Studying the spatio-temporal dynamics of wood decay with X-ray CT scanning. Holzforschung, 76 (5), 408–420. doi:10.1515/hf-2021-0167.
  • De Muynck, A., et al., 2015. Automated processing of series of micro-CT scans. In: 2nd International Conference on Tomography of Materials and Structures (ICTMS 2015), 3.
  • De Ridder, M., Van den Bulcke, J., and Vansteenkiste, D., 2010. High-resolution proxies for wood density variations in Terminalia superba. Annals of Botany, 107, 293–302. doi:10.1093/aob/mcq224.
  • Dierick, M., et al., 2010. A LabVIEW® based generic CT scanner control software platform. Journal of X-Ray Science and Technology, 18, 451–461. doi:10.3233/XST-2010-0268.
  • Dierick, M., et al., 2014. Recent micro-CT scanner developments at UGCT. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 324, 35–40. doi:10.1016/j.nimb.2013.10.051.
  • Esteves, B.M., and Pereira, H.M., 2009. Wood modification by heat treatment: a review. BioResources, 4, 370–404. doi:10.15376/biores.4.1.Esteves.
  • Fredriksson, M., 2019. On wood-water interactions in the over-hygroscopic moisture range-mechanisms, methods, and influence of wood modification. Forests. MDPI AG.
  • Guilley, E., et al., 2004. Decay resistance against Coriolus versicolor in Sessile oak (Quercus petraea Liebl.): analysis of the between-tree variability and correlations with extractives, tree growth and other basic wood properties. Wood Science and Technology, 38, 539–554. doi:10.1007/s00226-004-0250-8.
  • Hakkou, M., et al., 2005. Wettability changes and mass loss during heat treatment of wood. Holzforschung, 59, 35–37. doi:10.1515/HF.2005.006.
  • Hervé, V., et al., 2014. Density mapping of decaying wood using X-ray computed tomography. International Biodeterioration & Biodegradation, 86, 358–363. doi:10.1016/j.ibiod.2013.10.009.
  • Hill, C.A.S., 2006. Wood modification: chemical, thermal and other processes, 5. Chichester,England: John Wiley and Sons.
  • Hill, C.A.S., et al., 2013. Water vapour sorption behaviour of thermally modified wood. International Wood Products Journal, 4, 191–196. doi:10.1179/2042645313Y.0000000040.
  • Hill, C.A.S., Altgen, M., and Rautkari, L., 2021. Thermal modification of wood – a review: chemical changes and hygroscopicity. Journal of Materials Science, 56, 6581–6614. doi:10.1007/s10853-020-05722-z.
  • Humar, M., et al., 2008. Influence of xylem growth ring width and wood density on durability of oak heartwood. International Biodeterioration & Biodegradation, 62, 368–371. doi:10.1016/j.ibiod.2008.03.010.
  • Humar, M., et al., 2020. Monitoring a building made of CLT in Ljubljana. Wood Material Science & Engineering, 15 (6), 335–342. doi:10.1080/17480272.2020.1712740.
  • Javed, M., et al., 2015. Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung, 69 (7), 899–907. doi:10.1515/hf-2014-0183.
  • Jiang, X., et al., 2022. Moisture sorption behaviour of poplar and thermally modified poplar using dynamic vapour sorption (DVS). In: Proceedings IRG Annual Meeting, IRG/WP 22-60447.
  • Kocaefe, D., Poncsák, S., and Boluk, Y., 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources, 3, 517–537. doi:10.15376/biores.3.2.517-537.
  • Kramer, A., Barbosa, A. R. and Sinha, A. (2014) Viability of hybrid poplar in ANSI approved cross-laminated timber applications. Journal of Materials in Civil Engineering, 26(7). 06014009.
  • Lekounougou, S., Pétrissans, M., Jacquot, J.P., et al., 2009. Effect of heat treatment on extracellular enzymatic activities involved in beech wood degradation by Trametes versicolor. Wood Science and Technology, 43, 331–341. doi:10.1007/s00226-008-0236-z.
  • Lesar, B., et al., 2013. Influence of the thermo-hydro-mechanical treatments of wood on the performance against wood-degrading fungi. Wood Science and Technology, 47, 977–992. doi:10.1007/s00226-013-0553-8.
  • Li, H., et al., 2018. High-pressure treatment effects on density profile, surface roughness, hardness, and abrasion resistance of paulownia wood boards. Transactions of the ASABE, 61 (3), 1181–1188. doi:10.13031/trans.12718.
  • Macchioni, N., Palanti, S., and Rozenberg, P., 2007. Measurements of fungal wood decay on Scots pine and beech by means of X-ray microdensitometry. Wood Science and Technology, 41, 417–426. doi:10.1007/s00226-007-0128-7.
  • Marais, B.N., et al., 2020. Studies into fungal decay of wood in ground contact – part 1: The influence of water-holding capacity, moisture content, and temperature of soil substrates on fungal decay of selected timbers. Forests, 11 (12), 1284. doi:10.3390/f11121284.
  • Martin, B., et al., 2021. Monitoring imbibition dynamics at tissue level in Norway spruce using X-ray imaging. Holzforschung, 75 (12), 1081–1096. doi:10.1515/hf-2020-0269.
  • Monteiro, S.R.S., et al., 2020. Mechanical performance of glulam products made with Portuguese poplar. European Journal of Wood and Wood Products, 78, 5–15. doi:10.1007/s00107-019-01474-z.
  • Schindelin, J., Arganda-Carreras, I., Frise, E., et al., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676–682. doi:10.1038/nmeth.2019.
  • Sedighi-Gilani, M., et al., 2012. Visualization and quantification of liquid water transport in softwood by means of neutron radiography. International Journal of Heat and Mass Transfer, 55, 6211–6221. doi:10.1016/j.ijheatmasstransfer.2012.06.045.
  • Sedighi-Gilani, M., et al., 2014. Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes. Journal of Structural Biology, 187, 149–157. doi:10.1016/j.jsb.2014.06.003.
  • Stienen, T., Schmidt, O., and Huckfeldt, T., 2014. Wood decay by indoor basidiomycetes at different moisture and temperature. hfsg, 68, 9–15. doi:10.1515/hf-2013-0065.
  • Thybring, E.E., 2017. Water relations in untreated and modified wood under brown-rot and white-rot decay. International Biodeterioration & Biodegradation, 118, 134–142. doi:10.1016/j.ibiod.2017.01.034.
  • Thybring, E.E., and Fredriksson, M., 2021. Wood modification as a tool to understand moisture in wood. Forests, 12 (3), 372. http://doi.org/10.3390/f12030372.
  • Van Acker, J. et al., (2011) Limited variability in biological durability of thermally modified timber using vacuum based technology. In: 42nd Annual meeting of the International Research Group on Wood Protection (IRG/WP). International Research Group on Wood Protection.
  • Van den Bulcke, J., et al., 2009. Three-dimensional X-ray imaging and analysis of fungi on and in wood. Microscopy and Microanalysis, 15, 395–402. doi:10.1017/S1431927609990419.
  • Van den Bulcke, J., et al., 2011. Moisture dynamics and fungal susceptibility of plywood. International Biodeterioration & Biodegradation, 65 (5), 708–716. doi:10.1016/j.ibiod.2010.12.015.
  • Wadsö, L., et al., 2013. The activity of rot fungi (Postia placenta) during drying and rewetting cycles measured by isothermal calorimetry. Engineering in Life Sciences, 13, 536–540. doi:10.1002/elsc.201200096.
  • Wadsö, L., Johansson, S., and Bardage, S., 2017. Monitoring of fungal colonization of wood materials using isothermal calorimetry. International Biodeterioration & Biodegradation, 120, 43–51. doi:10.1016/j.ibiod.2017.02.003.
  • Wang, Z., et al., 2018. Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass and Bioenergy, 109 (2), 125–134. doi:10.1016/j.biombioe.2017.12.020.
  • Wang, L., 2020. An experimental study on flexural behavior of glulam beams made out of thermally treated fast-growing poplar laminae. SWST.
  • Willems, W., and Altgen, M., 2019. Hygrothermolytic wood modification. process description and treatment level characterisation. Wood Material Science & Engineering, 15, 213–222. doi:10.1080/17480272.2019.1570970.
  • Willems, W., Altgen, M., and Militz, H., 2015. Comparison of EMC and durability of heat treated wood from high versus low water vapour pressure reactor systems. International Wood Products Journal, 6, 21–26. doi:10.1179/2042645314Y.0000000083.
  • Willems, W., Altgen, M., and Rautkari, L., 2020. A molecular model for reversible and irreversible hygroscopicity changes by thermal wood modification. Holzforschung, 74 (4), 420–425. doi:10.1515/hf-2019-0057.
  • Willems, W., Mai, C., and Militz, H., 2013. Thermal wood modification chemistry analysed using van Krevelen’s representation. International Wood Products Journal, 4, 166–171. doi:10.1179/2042645313Y.0000000033.
  • Windeisen, E., et al., 2009. Relations between chemical changes and mechanical properties of thermally treated wood 10th EWLP, Stockholm, Sweden, August 25–28, 2008, 63(6), 773–778.
  • Withers, P.J., et al., 2021. Bayesian statistics and modelling. Nature Reviews Methods Primers, 1, 1–21. doi:10.1038/s43586-020-00001-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.