150
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Predicting the mechanical properties of timber from existing structures by the longitudinal vibration method, visual grading and definition of the nominal cross-section

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 366-374 | Received 12 Jun 2023, Accepted 29 Jul 2023, Published online: 17 Aug 2023

References

  • AENOR, 2011. UNE 56544:2011. Clasificación visual de la madera aserrada para uso estructural. Madera de coníferas (Visual grading for structural sawn timber. Coniferous timber). Technical committee AEN/CTN 56 Madera y Corcho. Madrid, Spain: Asociación Española de Normalización y Certificación (AENOR).
  • Arriaga, F., et al., 2012. Vibration method for grading of large cross-section coniferous timber species. Holzforschung, 66, 381–387. doi:10.1515/hf.2011.167.
  • Arriaga, F., et al., 2014. Determination of the mechanical properties of radiata pine timber by means of longitudinal and transverse vibration methods. Holzforschung, 68, 299–305. doi:10.1515/hf-2013-0087.
  • Arriaga, F., et al., 2017. Influence of length and sensor positioning on acoustic time-of-flight (ToF) measurement in structural timber. Holzforschung, 71 (9), 713–723. doi:10.1515/hf-2016-0214.
  • Arriaga, F., et al., 2022. Prediction of the mechanical properties of timber members in existing structures using the dynamic modulus of elasticity and visual grading parameters. Construction and Building Materials, 322, 126512. doi:10.1016/j.conbuildmat.2022.126512.
  • Baltrušaitis, A., et al., 2009. Acoustic and elastic properties of modified oak wood. Medziagotyra, 15 (4), 316–320.
  • Baltrušaitis, A., and Aleinikovas, M., 2012. Early-stage prediction and modelling strength properties of Lithuanian-grown Scots pine (Pinus sylvestris L.). Baltic Forestry, 18 (2), 327–333.
  • Baño, V., Arriaga, F., and Guaita, M., 2013. Determination of the influence of size and position of knots on load capacity and stress distribution in timber beams of Pinus sylvestris using finite element model. Biosystems Engineering, 114 (3), 214–222. doi:10.1016/j.biosystemseng.2012.12.010.
  • Burawska-Kupniewska, I., Mańkowski, P., and Krzosek, S., 2021. Mechanical properties of machine stress graded sawn timber depending on the log type. Forests, 12 (5), 532. doi:10.3390/f12050532.
  • Casado, M., et al., 2010. The influence of size in predicting the elastic modulus of Populus x euramericana timber using vibration techniques. In: Proceedings of the 1st international conference on structures and architecture. July 21-23, Guimaraes, Portugal, 2086–2093.
  • CEN, 2002. EN 13183-1. Moisture content of a piece of sawn timber - Part 1: Determination of oven dry method. Brussels, Belgium: European Committee for Standardization (CEN).
  • CEN, 2002. EN 13183-2. Moisture content of a piece of sawn timber – Part 2: Estimation by electrical resistance method. Brussels, Belgium: European Committee for Standardization (CEN).
  • CEN, 2012. EN 408 + A1:2012. Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties. Brussels, Belgium: European Committee for Standardization (CEN).
  • CEN, 2019. EN 844:2019. Round and sawn timber. Terminology. Brussels, Belgium: European Committee for Standardization (CEN)).
  • Esteban, M., 2003. Determinación de la capacidad resistente de la madera estructural de gran escuadría y su aplicación en estructuras existentes de madera de conífera [Determination of the load carrying capacity of large cross section structural coniferous timber on existing structures]. Universidad Politécnica de Madrid, ETS de Ingenieros de Montes. PhD Thesis. 365p. doi:10.20868/UPM.thesis.1404
  • Galligan, W.L., and Courteau, R.W., 1965. Measurements of the elasticity of lumber with longitudinal stress waves and the piezoelectric effect of wood. In: Proceedings of the 2nd symposium on nondestructive testing of wood. April Pullman, WA, USA, 223–244.
  • Guntekin, E., Emiroglu, Z.G., and Yilmaz, T., 2012. Prediction of bending properties for Turkish red pine (Pinus brutia ten.) lumber using stress wave method. Bioresources, 8 (1), 231–237.
  • Guntekin, E., Ozkan, S., and Yilmaz, T., 2014. Prediction of bending properties for beech lumber using stress wave method. Maderas. Ciencia y Tecnología, 16 (1), 0–0. doi:10.4067/S0718-221X2014005000008.
  • Hanhijärvi, A., Ranta-Maunus, A., and Turk, G., 2005. Potential of strength grading of timber with combined measurement techniques: Report of the Combigrade-project – Phase 1. Ed: VTT Technical Research Centre of Finland (Vol. 568). Valtion Teknillinen Tutkimuskeskus Publications.
  • Hearmon, R.F.S., 1966. Theory of the vibration testing of wood. Forest Products Journal, 16, 29–40.
  • Hermoso, E., 2001. Caracterización mecánica de la madera estructural de Pinus sylvestris L. [Structural timber mechanical characterisation of Pinus sylvestris L.]. Universidad Politécnica de Madrid, ETS de Ingenieros de montes. PhD Thesis. 277p. doi:10.20868/UPM.thesis.644
  • Hodoušek, M., et al., 2016. Comparison of non-destructive methods based on natural frequency for determining the modulus of elasticity of Cupressus lusitanica and Populus x canadensis. Bioresources, 12 (1), 270–282. doi:10.15376/biores.12.1.270-282.
  • Íñiguez-González, G., 2007. Clasificación mediante técnicas no destructivas y evaluación de las propiedades mecánicas de la madera aserrada de coníferas de gran escuadría para uso estructural [Non-destructive grading and evaluation of mechanical properties of structural sawn timber from large-square softwoods], Universidad Politécnica de Madrid, ETS de Ingenieros de montes. PhD Thesis. 236p. doi:10.20868/UPM.thesis.415
  • Jayne, B.A., 1959. Vibrational properties of wood as indices of quality. Forest Products Journal, 9 (11), 413–416.
  • Kollman, F., and Krech, H., 1960. Dynamische Messung der elastischen Holzeigenschaften und der Dämpfung Ein Beitrag zur zerstörungsfreien Werkstoffprüfung. Holz als Roh- und Werkstoff, 18, 41–54. doi:10.1007/BF02615616.
  • Krzosek, S., et al., 2021. Mechanical properties of polish-grown Pinus sylvestris L. structural sawn timber from the butt, middle and top logs. Wood Research, 66 (2), 231–242. doi:10.37763/wr.1336-4561/66.2.231242.
  • Llana, D.F., et al., 2020. Nondestructive testing used on timber in Spain: a literature review. Maderas. Ciencia y Tecnología, 22 (2), 0–0. doi:10.4067/S0718-221X2020005000201.
  • Machado, J., et al., 2009. Ultrasonic indirect method for evaluating clear wood strength and stiffness. In: proceedings of the 7th international symposium on nondestructive testing in civil engineering. June 30–3, Nantes, France, 3–8.
  • Martínez, R., et al., 2018. In situ density estimation of timber pieces by drilling residue analysis. European Journal of Wood and Wood Products, 76, 509–515. doi:10.1007/s00107-017-1214-7.
  • Martínez, R., et al., 2020. Wood density determination by drilling chips extraction in ten softwood and hardwood species. Forests, 11 (4), 383. doi:10.3390/f11040383.
  • Osuna-Sequera, C., et al., 2019. Improving density estimation in large cross-section timber from existing structures optimizing the number of non-destructive measurements. Construction and Building Materials, 211, 199–206. doi:10.1016/j.conbuildmat.2019.03.144.
  • Osuna-Sequera, C., et al., 2020. The influence of cross-section variation on bending stiffness assessment in existing timber structures. Engineering Structures, 204, 110082. doi:10.1016/j.engstruct.2019.110082.
  • Osuna-Sequera, C., et al., 2021. Acoustic wave velocity in long pieces of Salzmann pine for in-situ structural assessment. Construction and Building Materials, 269, 121256. doi:10.1016/j.conbuildmat.2020.121256.
  • Osuna-Sequera, C., et al., 2022. Considerations on variability in acoustic measurements in timber property assessment. Wood Material Science & Engineering, Published Online, 10p. doi:10.1080/17480272.2022.2129448.
  • Pellerin, R.F., 1965. A vibrational approach to nondestructive testing of structural lumber. Forest Products Journal, 15 (3), 93–101.
  • Plos, M., et al., 2022. From visual grading and dynamic modulus of European beech (Fagus sylvatica) logs to tensile strength of boards. Forests, 13 (1), 77. doi:10.3390/f13010077.
  • Rais, A., Pretzsch, H., and van de Kuilen, J.W.G., 2014. Roundwood pre-grading with longitudinal acoustic waves for production of structural boards. European Journal of Wood and Wood Products, 72, 87–98.
  • Ross, R.J., 2010. Wood handbook: wood as an engineering material, General Technical Report FPL-GTR-190. 509p. doi:10.2737/FPL-GTR-190
  • Ross, R.J., 2015. Nondestructive evaluation of wood: Second edition, General Technical Report FPL-GTR-238. 169p. doi:10.2737/FPL-GTR-238
  • Vössing, K.J., and Niederleithinger, E., 2018. Nondestructive assessment and imaging methods for internal inspection of timber. A review. Holzforschung, 72 (6), 467–476. doi:10.1515/hf-2017-0122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.