122
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of physico-chemical and thermo-mechanical properties of sungkai (Peronema canescens Jack.), sengon (Falcataria moluccana (Miq.) Barneby & J.W. Grimes), and teak (Tectona grandis L.f.) wood veneers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 408-418 | Received 30 May 2023, Accepted 31 Aug 2023, Published online: 13 Sep 2023

References

  • Bahanawan, A., et al., 2019. Moisture content, color quantification and starch content of oil palm trunk (Elaeis guineensis Jacq.). IOP Conference Series: Earth and Environmental Science, 374, 1.
  • Bahanawan, A., Darmawan, T., and Dwianto, W., 2020. Hubungan sifat berat jenis dengan sifat higroskopisitas melalui pendekatan nilai rerata kehilangan air [Relationship between specific gravity and hygroscopicity through average water loss approach]. Jurnal Riset Industri Hasil Hutan, 12, 1.
  • Barcík, Š, Gašparík, M., and Razumov, E.Y., 2015. Effect of temperature on the color changes of wood during thermal modification. Cellulose Chemistry and Technology, 49 (9-10), 789–798.
  • Broda, M., et al., 2021. The viscoelastic behaviour of waterlogged archaeological wood treated with methyltrimethoxysilane. Materials, 14, 18.
  • Cai, W., et al., 2019. Py-GC/MS analysis on product distribution of two-staged biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 138, 62–69.
  • Cameroon, 2022. Dark wood: Types, properties, and advantages, Vol. 2023, Cameroon timbere export.
  • Conte, S.L., and Vaiedelich, S., 2007. A wood viscoelasticity measurement technique and applications to musical instruments first results. Journal of the Violin Society of America VSA Papers, 21, 1.
  • de Castro, V.R., et al., 2022. Chemical composition of heartwood and sapwood of Tectona grandis characterized by CG/MS-PY. Scientific Reports, 12 (1), 18441.
  • Den, W., et al., 2018. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Frontiers in Chemistry, 6, 141.
  • Dzurenda, L., et al., 2020. Evaluation of the process thermal treatment of maple wood saturated water steam in terms of change of pH and color of wood. BioResources, 15 (2), 2550–2559.
  • Farizan, N.A., Catherine, B., and Hamami Sahri, M., 2018. Tensile shear strength of natural wood decorative plywood from lesser known Sungkai (Peronema canescens) tree. IOP Conference Series: Materials Science and Engineering, 368, 1–6.
  • Fatriasari, W., and Risanto, L., 2011. Sifat Pulp Kraft Kayu Sengon (Paraserianthes falcataria): Perbedaan Konsentrasi Bahan Pemasak dan Tahap Pemutihan. Widyariset, 14 (3), 589–597.
  • Fatriasari, W., Supriyanto, S., and Iswanto, A.H., 2015. The kraft pulp and paper properties of sweet sorghum bagasse (Sorghum bicolor L Moench). Journal of Engineering and Technological Sciences, 47 (2), 149–159.
  • Gandolfo, D.S., et al., 2016. Fourier transform infra-red spectroscopy using an attenuated total reflection probe to distinguish between Japanese larch, pine and citrus plants in healthy and diseased states. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 163, 181–188.
  • Gašparík, M., et al., 2019. Color and chemical changes in teak (Tectona grandis L. f.) and Meranti (Shorea spp.) wood after thermal treatment. BioResources, 14 (2), 2667–2683.
  • Gaur, R., et al., 2015. Evaluation of recalcitrant features impacting enzymatic saccharification of diverse agricultural residues treated by steam explosion and dilute acid. RSC Advances, 5 (75), 60754–60762.
  • Guan, C., et al., 2016. Measurement of dynamic viscoelasticity of full-size wood composite panels using a vibration testing method. BioResources, 11, 2.
  • Hadi, Y.S., et al., 2020. Color change and resistance to subterranean termite attack of Mangium (Acacia mangium) and Sengon (Falcataria moluccana) smoked wood. Journal of the Korean Wood Science and Technology, 48 (1), 1–11.
  • Hadi, Y.S., et al., 2021. Furfurylation of wood from fast-growing tropical species to enhance their resistance to subterranean termite. European Journal of Wood and Wood Products, 79 (4), 1007–1015.
  • Hatta, G.M., 1999. Sungkai (Peronema canescens) a promising pioneer tree, Vol. Doctoral, Wageningen University. Wageningen.
  • Hernes, P.J., and Hedges, J.I., 2004. Tannin signatures of barks, needles, leaves, cones, and wood at the molecular level 1. Geochimica et Cosmochimica Acta, 68 (6), 1293–1307.
  • Hu, J., Liu, Y., and Wu, Z., 2020. Structural color for wood coloring: a review. BioResources, 15 (4), 9917–9934.
  • Irawanti, S., et al., 2017. Understanding the timber value chain in community-based forestry in Indonesia: analysis of sengon in central Java. Journal of Sustainable Forestry, 36 (8), 847–862.
  • Ismayati, M., et al., 2023. A study of chemical constituents in platinum fast-grown teak wood (Tectona grandis) with age differences using Py-GCMS coupled with interdependence multivariate analysis. HAYATI Journal of Biosciences, 30 (2), 380–391.
  • Kačíková, D., et al., 2020. The impact of thermal treatment on structural changes of teak and iroko wood lignins. Applied Sciences, 10, 14.
  • Kamperidou, V., 2015. Correlation between the changes of colour and mechanical properties of thermally-modified Scots pine (Pinus sylvestris L.) wood. Proligno, 11 (4), 360–365.
  • Khan, K., Listyanto, T., and Soraya, E., 2022. Moisture content, density, and allometric model for estimating above-ground biomass of Peronema canescens trees in the private forest. Biodiversitas Journal of Biological Diversity, 23, 2.
  • Kimbell, G., Azad, M.A., 2021. Chapter FIFTEEN – 3D printing: bioinspired materials for drug delivery. In: M. Nurunnabi, ed. Bioinspired and biomimetic materials for drug delivery. Amsterdam, Netherlands: Woodhead Publishing, 295–318.
  • Kirker, G.T., et al., 2013. The role of extractives in naturally durable wood species. International Biodeterioration & Biodegradation, 82, 53–58.
  • Kishimoto, T., et al., 2010. Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. Journal of Agricultural and Food Chemistry, 58 (2), 895–901.
  • Krisdianto, D., and Dewi, L., 2012. Jenis kayu untuk mebel. Pusat Penelitian dan Pengembangan Keteknikan Kehutanan dan Pengolahan Hasil Hutan, Badan Penelitian dan Pengembangan Kehutanan – Kementerian Kehutanan, Indonesia.
  • Krisnawati, H., et al., 2011. Paraserianthes falcataria (L.) Nielsen: ecology, silviculture and productivity. Bogor, Indonesia: CIFOR.
  • Kucerova, V., Hrcka, R., and Hyrosova, T., 2022. Relation of chemical composition and colour of spruce wood. Polymers, 14, 1–10.
  • Kutnar, A., et al., 2020. Viscoelastic properties of thermo-hydro-mechanically treated beech (Fagus sylvatica L.) determined using dynamic mechanical analysis. European Journal of Wood and Wood Products, 79 (2), 263–271.
  • Lemmens, R.H.M.J., Soerianegara, I., and Wong, W.C., 1995. Plant Resources of South-East Asia. Leiden: Backhuys Publishers.
  • Lin, X., et al., 2015. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS. Energies, 8 (6), 5107–5121.
  • Ling, Z., Chen, S., Zhang, X. and Xu, F (2017) Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis. Bioresour Technol, 224, 611–617.
  • Loike, K., 2022. Sengon: A fast growing wood at a glance, Vol. 2023. Palangkaraya, Indonesia: Lightwood.
  • Lourenço, A., et al., 2014. Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Science and Technology, 49 (1), 159–175.
  • Lukmandaru, G., Ashitani, T., and Takahashi, K., 2009. Color and chemical characterization of partially black-streaked heart-wood in teak (Tectona grandis). Journal of Forestry Research, 20 (4), 377–380.
  • Mansyur, M., et al., 2008. A hand book of selected Indonesian wood species. Tanggerang, Indonesia: Indonesian Sawmill and Woodworking Association (ISWA) ITTO.
  • Martawijaya, A., et al., 1986. The Indonesian wood atlas. Bogor, Indonesia: Department of Forestry, Forest Products Research and Development Centre.
  • Martawijaya, A., et al., 2005. Atlas kayu Indonesia jilid II. Bogor, Indonesia: Department of Forestry, Forest Products Research and Development Centre.
  • Martha, R., et al., 2023. Differences of technological properties on sapwood and heartwood of short rotation teak wood. Wood Material Science & Engineering, 1–13.
  • Maryani, H., 2020. Dimensi Serat dan Komponen Kimia Kayu Reaksi pada Kayu Sungkai (Peronema canescens Jack). In: Faculty of Forestry Vol. Bachelor, IPB University. Indonesia.
  • Menard, K.P., and Menard, N.R., 2015. Dynamic mechanical analysis in the analysis of polymers and rubbers. In Krzysztof Matyjaszewski (Ed.), Encyclopedia of Polymer Science and Technology, 1–33.
  • Midgley, S., et al., 2015. Global markets for plantation teak; implications for growers in Lao PDR, (Ed.) A.C.f.I.A. Reserach, Australian Government. Australia.
  • Montero, C., et al., 2012. Relationship between wood elastic strain under bending and cellulose crystal strain. Composites Science and Technology, 72 (2), 175–181.
  • Moya, R., et al., 2012. Relationship between wood color parameters measured by the CIELab system and extractive and phenol content in Acacia mangium and Vochysia guatemalensis from fast-growth plantations. Molecules, 17 (4), 3639–3652.
  • Moya, R., and Calvo-Alvarado, J., 2012. Variation of wood color parameters of Tectona grandis and its relationship with physical environmental factors. Annals of Forest Science, 69 (8), 947–959.
  • Nasir, V., et al., 2021. Prediction of mechanical properties of artificially weathered wood by color change and machine learning. Materials, 14 (21), 6314.
  • Nelson, M. L. and O'connor, R. T. 1964. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. Journal of Applied Polymer Science, 8, 1325–1341.
  • Obataya, E., Norimoto, M., and Gril, J., 1998. The effects of adsorbed water on dynamic mechanical properties of wood. Polymer, 39 (14), 3059–3064.
  • Olsson, A.-M., and Salmkn, L., 1997. The effect of lignin structure on the viscoelastic properties of wood. Nordic Pulp & Paper Research Journal, 12 (311997), 140–144.
  • Ozgenc, O., Hiziroglu, S., and Yildiz, U.C., 2012. Weathering properties of wood species treated with different coating applications. BioResources, 7, 4.
  • Pandey, K.K., 2005. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability, 87 (2), 375–379.
  • Pari, G., 1996. Analisis Komponen Kimia dari Kayu Sengon dan Kayu Karet Pada Beberapa Macam Umur. Buletin Penelitian Hasil Hutan, 14 (8), 321–327.
  • Park, K.-C., et al., 2022. Peracetic acid treatment as an effective method to protect wood discoloration by UV light. Journal of the Korean Wood Science and Technology, 50 (4), 283–298.
  • Priadi, T., Suharjo, A.A.C., and karlinasari, L., 2019. Dimensional stability and colour change of heat-treated young teak wood. International Wood Products Journal, 10 (3), 119–125.
  • Putra, A. F. R., Wardenaar, E. and Husni, H (2018) Analisa Komponen Kimia Kayu Sengon (Albizia falcataria (L.) Fosberg) Berdasarkan Posisi Ketinggian Batang. Jurnal Hutan Lestari, 6(1), 83–89.
  • Qiu, Z., et al., 2020. Transparent wood with thermo-reversible optical properties based on phase-change material. Composites Science and Technology, 200, 1–7.
  • Ramadhani, N., et al., 2022. Analisis total fenol Dan flavonoid ekstrak etanol kulit batang sungkai (Peronema canescens Jack). Pharmaceutical Journal of Indonesia, 19 (1), 66–76.
  • Rashid, T., Kait, C. F. and Murugesan, T (2016) A “Fourier Transformed Infrared” compound study of lignin recovered from a formic acid process. Procedia Engineering, 148, 1312–1319.
  • Reiniati, I., et al., 2014. Linear viscoelasticity of hot-pressed hybrid poplar relates to densification and to the in situ molecular parameters of cellulose. Annals of Forest Science, 72 (6), 693–703.
  • Rizanti, D.E., et al., 2018. Comparison of teak wood properties according to forest management: short versus long rotation. Annals of Forest Science, 75, 2.
  • Sandoval-Torres, S., et al., 2010. Causes of color changes in wood during drying. Forestry Studies in China, 12 (4), 167–175.
  • Satistia, 2023. Wood industry in Indonesia – statistics & facts, Vol. 2023. New York: Statista Research Department.
  • Sedliačiková, M., and Moresová, M., 2022. Are consumers interested in colored beech wood and furniture products? Forests, 13, 9.
  • Solihat, N.N., et al., 2017. Disruption of oil palm empty fruit bunches by microwave-assisted oxalic acid pretreatment. Journal of Mathematical and Fundamental Sciences, 49 (3), 244–257.
  • Solihat, N.N., et al., 2022. Physical and chemical properties of Acacia mangium lignin isolated from pulp mill byproduct for potential application in wood composites. Polymers, 14, 3.
  • Sulistyo, J., Hata, T., Lukmandaru, G., Syafriani, Y. and Honma, S (2021) Catalytic process in producing green aromatics through fast pyrolysis of wood of five tropical fast growing trees species. Wood Research Journal, 12(1), 18–27.
  • Supraptiah, E., Ningsih, A.S., and Sofiah Apriandini, R., 2014. Pengaruh rasio cairan pemasak (AA charge) pada proses pembuatan pulp dari kayu sengon (Albizia falcataria) terhadap kualitas pulp. Kinetika, 5, 14–21.
  • Syofuna, A., Banana, A.Y., and Nakabonge, G., 2012. Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas Ciencia y Tecnología, 14 (2), 155–163.
  • Torniainen, P., et al., 2021. Correlation of studies between colour, structure and mechanical properties of commercially produced ThermoWood® treated Norway spruce and Scots pine. Forests, 12, 9.
  • Traore, M., Kaal, J., and Martinez Cortizas, A., 2018. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Science and Technology, 52 (2), 487–504.
  • Traore, M., Kaal, J., and Martinez Cortizas, A., 2023. Variation of wood color and chemical composition in the stem cross-section of oak (Quercus spp.) trees, with special attention to the sapwood-heartwood transition zone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 285, 121893.
  • Vandenbrink, J.P., et al., 2011. Analysis of crystallinity index and hydrolysis rates in the bioenergy crop sorghum bicolor. BioEnergy Research, 5 (2), 387–397.
  • Wangi, L.S.P., 2022. Sifat Kimia Kayu Sungkai (Peronema canescens Jack) pada Arah Aksial dan Radial dari Desa Warung Gunung, Provinsi Banten. In: Faculty of Forestry, Vol. Bachelor, Universitas Gajah Mada. Indonesia.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.