171
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Extract yields of two commercially valuable wood species in Central Africa: Bilinga and Tali, their nature and role in water sorption activities

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 419-441 | Received 06 May 2023, Accepted 31 Aug 2023, Published online: 24 Oct 2023

References

  • Adamopoulos, S., and Voulgaridis, V., 2012. Effect of Hot-water extractives on water sorption and dimensional changes of black locust wood. Wood Research, 57 (1), 69–78.
  • Atyi, E.A., et al., 2013. Étude de l'importance économique et sociale du secteur forestier et faunique au Cameroun: Rapport final.
  • Bahar, R., et al., 2017. Moisture sorption isotherms and thermodynamic properties of Oak wood (Quercus robur and Quercus canariensis): Optimization of the processing parameters. Heat and Mass Transfer, 53 (5), 1541–1552. doi: 10.1007/s00231-016-1916-0
  • Bessike, J.G., et al., 2022. Chemical characterization and the effect of a polyherbal varnish coating on the preservation of Ayous wood (Triplochiton scleroxylon). Industrial Crops and Products, 187, 115415. doi: 10.1016/j.indcrop.2022.115415
  • Bessike, J.G., et al., 2023. Evaluation of the potentials of Jatropha curcas seed oil and in combination with leaf extracts of Cymbopogon citratus, Ocimum basilicum, and Eucalyptus globulus as wood preservatives against Macrotermes bellicosus termites. Industrial Crops and Products, 195, 116205. doi: 10.1016/j.indcrop.2022.116205
  • Biwôlé, E., et al., 2021. Causes of differential behavior of extractives on the natural cold water durability of the welded joints of three tropical woods. Journal of Adhesion Science and Technology, 1–18.
  • Biwôlé, J.J.E., et al., 2022. Padauk (Pterocarpus soyauxii Taub.) extracts: An ecological solution for improving the natural water durability of welded wood. Industrial Crops and Products, 180, 114711. doi: 10.1016/j.indcrop.2022.114711
  • Boquet, R., Chirife, J., and Iglesias, H.A. (1980). On the equivalence of isotherm equations. International Journal of Food Science and Technology, 15(3), 345–349. doi: 10.1111/j.1365-2621.1980.tb00947.x
  • Brozdowski, J., et al., 2021. Composition of phenolic compounds, cyanogenic glycosides, organic acids and sugars in fruits of black cherry (Prunus serotina Ehrh.). Forests, 12, 762. doi: 10.3390/f12060762
  • Chiniforush, A.A., et al., 2019. Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study. Construction and Building Materials, 207, 70–83. doi: 10.1016/j.conbuildmat.2019.02.114
  • Choong, E.T., and Achmadi, S.S. (1991). Effect of extractives on moisture sorption and shrinkagein tropical woods. Wood and Fiber Science, 185–196.
  • De Oliveira, E.G., et al., 2009. Moisture sorption characteristics of microalgae Spirulina platensis. Brazilian Journal of Chemical Engineering, 26, 189–197. doi: 10.1590/S0104-66322009000100018
  • Dimitrienko, G.I., Murray, D.G., and McLean, S., 1974. Constituent of Nauclea diderrichi. V. A glycoside alkaloid. Tetrahedron Letters, 15, 1961. doi: 10.1016/S0040-4039(01)82604-6
  • Drovou, S., et al., 2015. Flavonoid tannins linked to long carbohydrate chains – MALDI-TOF analysis of the tannin extract of the African locust bean shells. Industrial Crops and Products, 67, 25–32. doi: 10.1016/j.indcrop.2015.01.004
  • Du, D., et al., 2011. Oleanane-Type triterpene saponins and cassaine-type diterpenoids from Erythrophleum fordii. Planta Medica, 77 (14), 1631–1638. doi: 10.1055/s-0030-1270992
  • Esteban, L.G., et al., 2004. Histéresis de la madera de Pinus sylvestris L. para isotermas de 35 °C mediante el método de sales saturadas. Materiales de Construcción, 54 (276), 51–64. doi: 10.3989/mc.2004.v54.i276.255
  • Esteban, L.G., et al., 2010. Effects of burial of Quercus spp. wood aged 5910±250BP on sorption and thermodynamic properties. International Biodeterioration & Biodegradation, 64, 371–377. doi:10.1016/j.ibiod.2010.01.010.
  • Fernández, F.G., et al., 2014. Sorption and thermodynamic properties of Terminalia superba Engl. & Diels and Triplochiton scleroxylon K. Schum. through the 15, 35 and 50 °C sorption isotherms. & Diels and Triplochiton scleroxylon K. Schum. Through the 15, 35 and 50 °C sorption isotherms. European Journal of Wood and Wood Products, 72 (1), 99–106. doi:10.1007/s00107-013-0752-x.
  • Fonyuy, B.G., et al., 2023. Moisture desorption isotherms and thermodynamic properties of two dense tropical woods: Tali (Erythrophleum suaveolens Brenan) and Bilinga (Nauclea diderrichii Merr). European Journal of Wood and Wood Products, doi:10.1007/s00107-022-01907-2.
  • Freddy, Z.J., et al., 2022. Physicochemical and hygroscopic properties of charcoals produced from residues of two tropical woods from Cameroon. International Journal of Coal Preparation and Utilization, 1–24.
  • Fredriksson, M., and Thybring, E.E., 2018. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose, 25, 4477–4485. doi: 10.1007/s10570-018-1898-9
  • Gérard, J., et al., 2016. Atlas des bois tropicaux: caractéristiques technologiques et utilisations. Editions Quae.
  • Hernández, R.E., 2007a. Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood and Fiber Science, 39 (1), 132–145.
  • Hernández, R.E., 2007b. Swelling properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood and Fiber Science, 146–158.
  • Hill, C.A., et al., 2012. The water vapour sorption properties of thermally modified and densified wood. Journal of Materials Science, 47 (7), 3191–3197. doi: 10.1007/s10853-011-6154-8
  • Hill, C., Curling, S., and Ormondroyd, G., 2014. The role of hydroxyl groups in determining the sorption properties of modified wood. In 7th European conference on wood modification, Lisbon, Portugal.
  • Hillis, W.E., 1987. Chemical features. In: Heartwood and tree exudates (pp. 76-119). Berlin, Heidelberg: Springer.
  • Himmel, S., and Mai, C., 2015. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood. Holzforschung, 69 (5), 633–643. doi: 10.1515/hf-2014-0161
  • Huang, Z., et al., 2009. Evaluation of biological activities of extracts from 22 African tropical wood species. Journal of Wood Science, 55 (3), 225–229. doi: 10.1007/s10086-008-1024-y
  • Jakes, J.E., et al., 2019. Effects of moisture on diffusion in unmodified wood cell walls: A phenomenological polymer science approach. Forests, 10 (12), 1084. doi: 10.3390/f10121084
  • Jankowska, A., et al., 2017. Effect of extractives on the equilibrium moisture content and shrinkage of selected tropical species “extractives and moisture. BioResources, 12 (1), 597–607.
  • Jannot, Y., et al., 2006. Experimental determination and modelling of water desorption isotherms of tropical woods: Afzelia, ebony, iroko, moabi and obeche. Holz als Roh- und Werkstoff, 64 (2), 121–124. doi: 10.1007/s00107-005-0051-2
  • Jowitt, R., and Wagstaffe, P.J., 1989. The certification of the water content of microcrystalline cellulose (MCC) at 10 water activities, CRM 30. In: Commission of the European communities, community bureau of reference, EUR 12429, Brussels, Belgium: EN.
  • Kim, J.W., Harper, D.P., and Taylor, A.M., 2009. Effect of extractives on water sorption and durability of wood-plastic composites. Wood and Fiber Science, 279–290.
  • Kobus-Cisowska, J., et al., 2019. Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Ciência Rural, 50.
  • Konai, N., et al., 2017. Characterization of ficus sycomorus tannin using ATR-FT MIR, MALDI-TOF MS and 13C NMR methods. European Journal of Wood and Wood Products, 75 (5), 807–815. doi: 10.1007/s00107-017-1177-8
  • Kulasinski, K., et al., 2014. Molecular mechanism of moisture-induced transition in amorphous cellulose. ACS Macro Letters, 3 (10), 1037–1040. doi: 10.1021/mz500528m
  • Lamidi, M., et al., 1995. 3α−5α-Tetrahydrodesoxycordifoline from nauclea diderrichii (de wild). Merr. Bark. Pharmaceut Pharmacol Lett., 5, 8.
  • Lamidi, M., et al., 1997. Revised Structures of Four Saponins from Nauclea diderrichii. Planta Medica, 63, 284. doi: 10.1055/s-2006-957679
  • Lamidi, M., et al., 2005. Gluco-indole alkaloids from the bark ofNauclea diderrichii.1H and13C NMR assignments of 3?-5?-tetrahydrodeoxycordifoline lactam and cadambine acid. Magnetic Resonance in Chemistry, 43, 427. doi: 10.1002/mrc.1551
  • Mahonghol, D., 2019. Cameroon & Equatorial Guinea forestry sectors and industry.
  • Manga Bengono, D.M., et al., 2022a. Sorption behaviour of three African tropical woods (Sapelli, Sipo, Kosipo) with similar anatomical structures from Cameroon. International Wood Products Journal, 13 (3), 194–202. doi: 10.1080/20426445.2022.2073075
  • Manga Bengono, D.M., et al., 2022b. Influence of the anatomical structure on the moisture sorption and thermodynamic properties of the African tropical woods. Heat and Mass Transfer, 59 (1), 113–130. doi: 10.1007/s00231-022-03242-x
  • Mansouri, H.R., et al., 2011. Causes for the improved water resistance in pine wood linear welded joints. Journal of Adhesion Science and Technology, 25 (16), 1987–1995. doi: 10.1163/016942410X544794
  • Morimoto, M., et al., 2006. Insect antifeedants, pterocarpans and pterocarpol, in heartwood of Pterocarpus macrocarpus Kruz. Bioscience, Biotechnology, and Biochemistry, 70, 1864–1868. doi: 10.1271/bbb.60017
  • Mounguengui, S., et al. 2016. Total phenolic and lignin contents, phytochemical screening, antioxidant and fungal inhibition properties of the heartwood extractives of ten Congo Basin tree species. Annals of Forest Science, 73 (2), 287–296. doi: 10.1007/s13595-015-0514-5
  • NF B, 51–004, 1985. Bois, détermination de l’humidité, France, 1985.
  • NF B, 51–005, 1985. Bois, détermination de la masse volumique, France.
  • Nkolo Meze’e, Y.N., Noah Ngamveng, J., and Bardet, S., 2008. Effect of enthalpy-entropy compensation during sorption of water vapour in tropical woods: The case of Bubinga (Guibourtia Tessmanii J. Léonard; G. Pellegriniana JL). Thermochimica Acta, 468 (1), 1–5. doi: 10.1016/j.tca.2007.11.002
  • Nsouandélé, J.L., et al., 2010. Determination of the diffusion coefficient of water in the tropical woods [Determination du coefficient de diffusion de l’eau dans les bois tropicaux]. Physical Chemistry News, 54, 61–67.
  • Nsouandélé, J.L., Tamba, J.G., and Bonoma, B., 2018. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon. Heat and Mass Transfer, 54 (10), 3089–3096. doi: 10.1007/s00231-018-2350-2
  • Nzokou, P., and Kamdem, D.P., 2004. Influence of wood extractives on moisture sorption and wettability of Red Oak (quercus rubra), Black Cherry (Prunus Serotina), and Red Pine (Pinus Resinosa). Wood and Fiber Science, 36 (4), 483–492. © 2004 by the Society of Wood Science and Technology.
  • Obataya, E., Zeniya, N., and Endo-Ujiie, K., 2021. Effects of water-soluble extractives on the moisture sorption properties of spruce wood hygrothermally treated at 120°C and different humidity levels. Wood Material Science & Engineering, 16 (2), 124–131. DOI:10.1080/17480272.2019.1635642.
  • Oliveira, L.S., et al., 2010. Natural resistance of five woods to Phanerochaete chrysosporium degradation. International Biodeterioration & Biodegradation, 64, 711–715. doi: 10.1016/j.ibiod.2010.08.001
  • Ollivier, E., et al., 1995. Triterpenic saponins from Nauclea diderrichii. Book of abstracts, 210th ACS National Meeting; Chicago. August 20-24, 1995, (Pt. 1), AGFD-124.
  • Ouertani, S., et al., 2011. Palm wood drying and optimization of the processing parameters. Wood Material Science and Engineering, 6 (1–2), 75–90. doi: 10.1080/17480272.2010.551546
  • Ouertani, S., Simo-Tagne, M., and Rémond, R., 2022. Sorption isotherms and moisture transfer properties of seven Central Africa hardwood species. Wood Material Science & Engineering, 1–10.
  • Papadopoulos, A.N., and Hill, C.A.S., 2003. The sorption of water vapour by anhydride modified softwood. Wood Science and Technology, 37 (3), 221–231. doi: 10.1007/s00226-003-0192-6
  • Pasch, H., Pizzi, A., and Rode, K., 2001. MALDI-TOF mass spectrometry of polyflavonoid tannins. Polymer, 42 (18), 7531–7539. doi: 10.1016/S0032-3861(01)00216-6
  • Popper, R., Niemz, P., and Torres, M. (2006). Influence of the extractives of selected extraneous woods on the equilibrium moisture content. Holz als Roh-und Werkstoff, 64, 491–496. doi: 10.1007/s00107-006-0132-x
  • Richard, B., et al., 1992. Constituents from leaves of Nauclea diderrichii. Bulletin de la Société Royale des Sciences de Liège, 61, 423.
  • Saha, J.B.T., et al., 2013. Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus), Tali (Erythrophleum suaveolens), Moabi (Baillonella toxisperma), and Movingui (Distemonanthus benthamianus). Industrial Crops and Products, 41, 71–77. doi: 10.1016/j.indcrop.2012.04.012
  • Saha Tchinda, J.B.S., et al., 2018. Inhibition of fungi with wood extractives and natural durability of five Cameroonian wood species. Industrial Crops and Products, 123, 183–191. doi: 10.1016/j.indcrop.2018.06.078
  • Sallenave, P., 1971. Propriétés physiques et mécaniques des bois tropicaux de l'Union française. Deuxieme supplément. Nogent-sur-Marne: CTFT 123p.
  • Santana, A.L.B.D., et al., 2010. Antitermitic activity of extractives from three Brazilian hardwoods against Nasutitermes corniger. International Biodeterioration & Biodegradation, 64, 7–12. doi: 10.1016/j.ibiod.2009.07.009
  • Saputra, H., Simonsen, J., and Li, K., 2004. Effect of extractives on the flexural properties of wood/plastic composites. Composite Interfaces, 11 (7), 515–524. doi: 10.1163/1568554042722964
  • Sawhney, I.K., et al., 2014. Moisture sorption isotherms and thermodynamic properties of whey protein concentrate powder from Buffalo skim milk. Journal of Food Processing and Preservation, 38 (4), 1787–1798. doi:10.1111/jfpp.12148.
  • Schultz, T.P., and Nicholas, D.D., 2000. Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry, 54, 47–52. doi: 10.1016/S0031-9422(99)00622-6
  • Shen, X., et al., 2021. Water vapor sorption mechanism of furfurylated wood. Journal of Materials Science, 56 (19), 11324–11334. doi: 10.1007/s10853-021-06041-7
  • Simo-Tagne, M., et al., 2011. Modelisation of desorption isotherms and estimation of the thermophysic and thermodynamic properties of tropical woods in Cameroon: The case of Ayous and Ebony woods. Revue des Energies Renouvelables, 14 (3), 487–500.
  • Simo-Tagne, M., et al., 2016a. Sorption behavior of four tropical woods using a dynamic vapor sorption standard analysis system. Maderas. Ciencia y Tecnología, 18 (3), 403–412.
  • Simo-Tagne, M., et al., 2016b. Modélisation des isothermes de sorption, caractérisation des propriétés thermodynamiques et détermination des humidités d’équilibre d’usage des bois tropicaux. Revue des Energies Renouvelables, 19 (1), 79–96.
  • Son, N.T., 2019. Genus erythrophleum: Botanical description, traditional use, phytochemistry and pharmacology. Phytochemistry Reviews, 18, 571–599. doi: 10.1007/s11101-019-09640-0
  • Spalt, H.A., 1958. The fundamentals of water vapor sorption by wood. Forest Products Journal, 8 (10), 288–295.
  • Taylor, A.M., Gartner, B.L., and Morrell, J.J., 2006. Effects of heartwood extractive fractions of Thuja plicata and Chamaecyparis nootkatensis on wood degradation by termites or fungi. Journal of Wood Science, 52, 147–153. doi: 10.1007/s10086-005-0743-6
  • Thybring, E.E., et al., 2021. Common sorption isotherm models are not physically valid for water in wood. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127214. doi: 10.1016/j.colsurfa.2021.127214
  • Thybring, E.E., Kymäläinen, M., and Rautkari, L., 2018. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated. Wood Science and Technology, 52 (2), 297–329. doi: 10.1007/s00226-017-0977-7
  • Trignan, J., 1990. Probabilités statistiques et leurs applications: brevet de technicien supérieur, instituts universitaires de technologie. Bréal. (Statistical probabilities and their applications: Higher Technician's Certificate, University Institutes of Technology).
  • Tropix 7-Cirad, 2012. Les principales caractéristiques technologiques de 245 essences forestières tropicales: fiche TALI. Cirad, UR BioWooEB. doi:10.18167/74726F706978.
  • Vahtikari, K., et al., 2017. The influence of extractives on the sorption characteristics of Scots pine (Pinus sylvestris L.). Journal of Materials Science, 52 (18), 10840–10852. doi:10.1007/s10853-017-1278-0.
  • Vainio-Kaila, T., et al., 2013. Effect of extractives and thermal modification on antibacterial properties of Scots pine and Norway spruce. International Wood Products Journal, 4 (4), 248–252. doi: 10.1179/2042645313Y.0000000038
  • Wangaard, F.F., and Granados, L.A., 1967. The effect of extractives on water-vapor sorption by wood. Wood Science and Technology, 1 (3), 253–277. doi: 10.1007/BF00349758
  • Zelinka, S.L., Glass, S.V., and Thybring, E.E., 2018. Myth versus reality: Do parabolic sorption isotherm models reflect actual wood–water thermodynamics? Wood Science and Technology, 52, 1701–1706. doi:10.1007/s00226-018-1035-9.
  • Zelinka, S.L., Glass, S.V., and Thybring, E.E., 2020. Evaluation of previous measurements of water vapor sorption in wood at multiple temperatures. Wood Science and Technology, 54, 769–786. doi: 10.1007/s00226-020-01195-0
  • Zhou, H., Xu, R., and Ma, E., 2016. Effects of removal of chemical components on moisture adsorption by wood. Bioresources, 11 (2), 3110–3122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.