699
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of the chipping process of beech (Fagus sylvatica L.) wood: knives wear, chemical and microscopic analysis of wood

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 473-484 | Received 29 Mar 2023, Accepted 11 Sep 2023, Published online: 21 Sep 2023

References

  • Anca-Couce, A., et al., 2020. Assessment of biomass pyrolysis TGA with an international round robin. Fuel, 276, 118002. doi:10.1016/j.fuel.2020.118002.
  • Aremu, M.O., Aperolola, S.O., and Dabonyan, O.O., 2015. Suitability of Nigerian corn husk and plantain stalk for pulp and paper production. European Scientific Journal, 11 (30), 146–152.
  • ASTM D1107-21, 2021. Standard test method for ethanol-toluene solubility of wood. West Conshohocken, PA: ASTM International.
  • Bhagia, S., et al., 2022. Nanoscale FTIR and mechanical mapping of plant cell walls for understanding biomass deconstruction. ACS Sustainable Chemistry & Engineering, 10 (9), 3016–3026. doi:10.1021/acssuschemeng.1c08163.
  • Čermák, P., et al., 2022. Wood-water interactions of thermally modified, acetylated and melamine formaldehyde resin impregnated beech wood. Holzforschung, 76 (5), 437–450. doi:10.1515/hf-2021-0164.
  • Cho, I.S., Amanov, A., and Kim, J.D., 2015. The effects of AlCrN coating, surface modification and their combination on the tribological properties of high speed steel under dry conditions. Tribology International, 81, 61–72. doi:10.1016/j.triboint.2014.08.003.
  • Cristóvaõ, L., et al., 2011. Tool wear for lesser known tropical wood species. Wood Material Science and Engineering, 6 (3), 155–161. doi:10.1080/17480272.2011.566355.
  • Ding, F., et al., 2009. Effects of some wood chip properties on pulp quality. Pulp and Paper Canada, 110 (6), 20–23.
  • Ekevad, M., Cristóvaõ, L., and Marklund, B., 2012. Wear of teeth of circular saw blades. Wood Material Science and Engineering, 7 (3), 1–4. doi:10.1080/17480272.2012.669405.
  • Esteves, B., et al., 2013. Chemical changes of heat treated pine and eucalyptus wood monitored by FTIR. Maderas: Ciencia y Tecnología, 15 (2), 245–258.
  • Eugenio, M.E., et al., 2019. Alternative raw materials for pulp and paper production in the concept of a lignocellulosic biorefinery. In: A. Pascual and M. Martin, eds. Cellulose. IntechOpen. doi:10.5772/intechopen.90041.
  • Facello, A., et al., 2013. The effect of knife wear on chip quality and processing cost of chestnut and locust fuel wood. Biomass and Bioenergy, 59, 468–476. doi:10.1016/j.biombioe.2013.07.012.
  • Faix, O., Meier, D., and Fortmann, I., 1990. Thermal-degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz als Roh-und Werkstoff, 48 (7–8), 281–285.
  • Freitas, T.P., et al., 2018. Environmental effect on chemical composition of eucalyptus clones wood for pulp production. CERNE, 24 (3), 219–224. doi:10.1590/01047760201824032558.
  • GOST 23.208-79, 1979. Ensuring of wear resistance of products. Wear resistance testing of materials by friction against loosely fixed abrasive particles.
  • GOST 3647-80, 1982. Abrasives. Grain sizing. Graininess and fraction. Test methods.
  • Heidari, M., et al., 2013. Study of the wear mechanisms of chipper-canter knives used in primary transformation of wood. In: Materials science and technology conference and exhibition, MS&T’13, Montreal, 8 p.
  • Hill, C., Altgen, M., and Rautkari, L., 2021. Thermal modification of wood – a review: chemical changes and hygroscopicity. Journal of Materials Science, 56, 6581–6614. doi:10.1007/s10853-020-05722-z.
  • Horman, I., Busuladžić, I., and Azemović, E., 2014. Temperature influence on wear characteristics and blunting of the tool in continuous wood cutting process. Procedia Engineering, 69, 133–140.
  • ISO 11885, 2007. Water quality. Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
  • ISO 13878, 1998. Soil quality – determination of total nitrogen content by dry combustion (“elemental analysis”).
  • ISO 6508-1, 2016. Metallic materials – Rockwell hardness test – part 1: test method.
  • Jaroš, A. and Fiala, Z., 2016. Investigation of the influence of PVD coatings deposited on HSS milling cutter. Manufacturing Technology, 16 (3), 506–512.
  • Jeon, S., et al., 2017. Knife-edge interferometry for cutting tool wear monitoring. Precision Engineering, 50, 354–360. doi:10.1016/j.precisioneng.2017.06.009.
  • Kalincová, D., Ťavodová, M., and Jakubéczyová, D., 2018. Quality evaluation of the coatings and its influence on the wood machining tool wear. Manufacturing Technology, 4, 578–584.
  • Kamperidou, V., 2019. The biological durability of thermally- and chemically-modified black pine and poplar wood against basidiomycetes and mold action. Forests, 10 (12), 1111. doi:10.3390/f10121111.
  • Kara, S. and Li, W., 2011. Unit process energy consumption models for material removal processes. IRP Annals, 60 (1), 37–40. doi:10.1016/j.cirp.2011.03.018.
  • Kazlauskas, D., et al., 2022. Wear behaviour of PVD coating strengthened WC-Co cutters during milling of oak-wood. Wear, 498–499, 204336. doi:10.1016/j.wear.2022.204336.
  • Klamecki, B., 1979. A review of wood cutting tool wear literature. Holz als Roh-und Werkstoff, 37, 265–276.
  • Kováč, J., et al., 2014. The impact of design parameters of a horizontal wood splitter on splitting force. Drvna Industrija, 65 (4), 263–271. doi:10.5552/drind.2014.1335.
  • Kováč, J., et al., 2022. The influence of the coating on the saw blade on the energy intensity of cross-cutting of wood. Coatings, 12, 1803. doi:10.3390/coatings12121803.
  • Krilek, J., et al., 2021. Design of a stationary disc chipper project for dendromass chipping with stress analysis FEM methods. BioResources, 16 (4), 8205–8218.
  • Kubovský, I., Kačíková, D., and Kačík, F., 2020. Structural changes of oak wood main components caused by thermal modification. Polymers, 12, 485. doi:10.3390/polym12020485.
  • Kuljich, S., Hernández, R.E., and Blais, C., 2017. Effects of cutterhead diameter and log infeed position on size distribution of pulp chips produced by a chipper-canter. European Journal of Wood and Wood Products, 75 (5), 747–760. doi:10.1007/s00107-016-1150-y.
  • Kumar, R. and Jagath, C., 2013. Boundary element methods for thermal problems – review. International Journal of Engineering Research & Technology (IJERT), 2 (10), 2486–2496. doi:10.17577/IJERTV2IS100669.
  • Malkov, S., Tikka, P., and Gullichsen, J., 2001. Towards complete impregnation of woodchips with aqueous solutions. Paperi Ja Puu, 83 (6), 468–473.
  • Nadolny, K., et al., 2020. Experimental studies on durability of PVD-based CrCN/CrN-coated cutting blade of planer knives used in the pine wood planing process. Materials, 13, 2398. doi:10.3390/ma13102398.
  • Okai, R., Tanaka, C., and Iwasaki, Y., 2005. Influence of mechanical properties and mineral salts in wood species on tool wear of high-speed steels and satellite-tipped tools – consideration of tool wear of the newly developed tip-inserted band saw. Holz als Roh- und Werkstoff, 64, 45–52.
  • Pichler, P., et al., 2018. Evaluation of wood material models for the numerical assessment of cutting forces in chipping processes. Wood Science and Technology, 52, 281–294. doi:10.1007/s00226-017-0962-1.
  • Poje, A., et al., 2018. The effect of feedstock, knife wear and work station on the exposure to noise and vibrations in wood chipping operations. Silva Fennica, 52 (1), 1–14. doi:10.14214/sf.7003.
  • Porankiewicz, B., et al., 2006. Highspeed steel tool wear during wood cutting in the presence of high-temperature corrosion and mineral contamination. Wood Science and Technology, 40 (8), 673–682. doi:10.1007/s00226-006-0084-7.
  • Porankiewicz, B. and Grönlund, A., 1991. Tool wear-influencing factors. In: Proceedings of the 10th International Wood Machining Seminar, University of California, Richmond, CA, USA, October 21–23, 220–229.
  • Porankiewicz, B., Sandak, J., and Tanaka, C., 2005. Factors influencing steel tool wear when milling wood. Wood Science and Technology, 39 (3), 225–234. doi:10.1007/s00226-004-0282-0.
  • Ramasamy, G. and Ratnasingam, J., 2010. A review of cemented tungsten carbide tool wear during wood cutting processes. Journal of Applied Sciences, 10 (22), 2799–2804. doi:10.3923/jas.2010.2799.2804.
  • Reimer, L., 1998. Electron scattering and diffusion. In: Scanning electron microscopy. Springer series in optical sciences. Berlin: Springer, Vol. 45, 57–134. doi:10.1007/978-3-540-38967-5_3.
  • Salh, R., 2011. Silicon nanocluster in silicon dioxide: cathodoluminescence, energy dispersive X-ray analysis and infrared spectroscopy studies. In: S. Basu, ed. Crystalline silicon – properties and uses. Rijeka: InTech. doi:10.5772/22607.
  • Sandberg, D., Haller, P., and Navi, P., 2013. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science and Engineering, 8 (1), 64–88. doi:10.1080/17480272.2012.751935.
  • Schalk, N., Tkadletz, M., and Mitterer, C., 2022. Hard coatings for cutting applications: physical vs. chemical vapor deposition and future challenges for the coatings community. Surface and Coatings Technology, 429, 127949. doi:10.1016/j.surfcoat.2021.127949.
  • Seifert, V.K., 1956. About a new method for rapid determination of pure cellulose (in German). Das Papier, 10, 301–306.
  • Sluiter, A., et al., 2012. Determination of structural carbohydrates and lignin in biomass. Golden, CO: National Renewable Energy Laboratory, NREL/TP-510-42618.
  • Souza, P.S., et al., 2020. Analysis of the surface energy interactions in the tribological behavior of ALCrN and TIAlN coatings. Tribology International, 146, 106206. doi:10.1016/j.triboint.2020.106206.
  • Spinelli, R., Glushkov, S., and Markov, I., 2014. Managing chipper knife wear to increase chip quality and reduce chipping cost. Biomass and Bioenergy, 62, 117–122. doi:10.1016/j.biombioe.2014.01.007.
  • STN ISO 10694, 2001. Soil quality. Determination of organic and total carbon after dry combustion (elementary analysis).
  • Szász-Len, A.M., Holonec, L., and Pamfil, D., 2016. Mineral substances in stem wood tissue of European beech (Fagus sylvatica L.). ProEnvironment, 9, 41–55.
  • Ťavodová, M., et al., 2022. Analysis of damaged delimber knives and the possibility of increasing their service life. Manufacturing Technology, 22 (1), 80–88. doi:10.21062/mft.2022.011.
  • Telmo, C., Lousada, J., and Moreira, N., 2010. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Materials Science Bioresource Technology, 101 (11), 3808–3815. doi:10.1016/j.biortech.2010.01.021.
  • Tjeerdsma, B. and Militz, H., 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff, 63 (2), 102–111.
  • Varghese, A., Kulkarni, V., and Joshi, S.S., 2022. Modeling cutting edge degradation by chipping in micro-milling. Wear, 488–489, 204141. doi:10.1016/j.wear.2021.204141.
  • Výbohová, E., et al., 2018. The effect of heat treatment on the chemical composition of ash wood. BioResources, 4, 8394–8408. doi:10.15376/biores13.4.8394-8408.
  • Warcholinski, B. and Gilewicz, A., 2011. Multilayer coatings on tools for woodworking. Wear, 271, 2812–2820.
  • Warcholinski, B. and Gilewicz, A., 2022. Surface engineering of woodworking tools, a review. Applied Sciences, 12, 10389. doi:10.3390/app122010389.
  • Wise, L.E., Murphy, M., and D’ Addieco, A.A., 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal, 122, 35–44.
  • Wu, D., et al., 2023a. A quantitative model that correlates sharpness retention and abrasive wear of knife blades. Wear, 518–519, 204634. doi:10.1016/j.wear.2023.204634.
  • Wu, D., et al., 2023b. Enhanced wear resistance of blades made of martensitic steels: A study of diverse α′-matrix/carbide microstructures. Materials Characterization, 201, 112939. doi:10.1016/j.matchar.2023.112939.
  • X48CrMoV8-1-1, 2019. Lexicon of metals 2.7 (in Czech). Praha: Verlag Dashöfer, 4/2019. Available from: https://www.dashofer.cz/ [Accessed 27 February 2023].