67
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Investigation into the long-term stress relaxation behaviors of white oak (Quercus alba L.) based on the time–temperature–moisture superposition principle

, , , , &
Pages 521-529 | Received 05 Jul 2023, Accepted 27 Sep 2023, Published online: 09 Oct 2023

References

  • Chen, L.J., et al., 2013. Description of wheat straw relaxation behavior based on a fractional-order constitutive model. Agronomy Journal, 105 (1), 134–142. doi:10.2134/agronj2012.0190
  • Donaldson, L.A., 2019. Wood cell wall ultrastructure the key to understanding wood properties and behaviour. Iawa Journal, 40 (4), 645–672. doi:10.1163/22941932-40190258
  • Eitelberger, J., et al., 2012. Multiscale prediction of viscoelastic properties of softwood under constant climatic conditions. Computational Materials Science, 55, 303–312. doi:10.1016/j.commatsci.2011.11.033
  • Fuentes-Sepulveda, R., et al., 2023. Effect of the temperature and grain direction on the stress relaxation behavior of PCM-impregnated and nonimpregnated wood under tensile and bending stresses. European Journal of Wood and Wood Products, 81 (3), 713–722. doi:10.1007/s00107-022-01923-2
  • Hai, Q., and Mishnaevsky, L., 2009. Moisture-related mechanical properties of softwood: 3D micro-mechanical modeling. Computational Materials Science, 46 (2), 310–320. doi:10.1016/j.commatsci.2009.03.008
  • Hanhijärvi, A., and Mackenzie-Helnwein, P., 2003. Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. I: Orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. Journal of Engineering Mechanics, 129 (9), 996–1005. doi:10.1061/(ASCE)0733-9399(2003)129:9(996)
  • Hou, J.F., et al., 2021. Experimental study and comparative numerical modeling of creep behavior of white oak wood with various distributions of earlywood vessel belt. Journal of Wood Science, 67 (1), 57. doi:10.1186/s10086-021-01989-1
  • Hu, W.G., and Guan, H.Y., 2019. Study on compressive stress relaxation behavior of beech based on the finite element method. Maderas-Ciencia Y Tecnologia, 21 (1), 15–24. doi:10.4067/S0718-221X2019005000102
  • Huc, S., Hozjan, T., and Svensson, S., 2018. Rheological behavior of wood in stress relaxation under compression. Wood Science and Technology, 52 (3), 793–808. doi:10.1007/s00226-018-0993-2
  • Iida, I., et al., 2002. Stress relaxation of wood during elevating and lowering processes of temperature and the set after relaxation II: consideration of the mechanism and simulation of stress relaxation behavior using a viscoelastic model. Journal of Wood Science, 48, 119–125. doi:10.1007/BF00767288
  • Kurenuma, Y., and Nakano, T., 2012. Analysis of stress relaxation on the basis of isolated relaxation spectrum for wet wood. Journal of Materials Science, 47 (11), 4673–4679. doi:10.1007/s10853-012-6335-0
  • Liu, R., Cao, J.Z., and Chen, Y., 2017. Stress relaxation of composites made of polypropylene and organo-montmorillonite modified wood flour during water immersion. Holzforschung, 71 (2), 163–170. doi:10.1515/hf-2016-0116
  • Ma, X.X., et al., 2015. Development of creep models for glued laminated bamboo using the time-temperature superposition principle. Wood and Fiber Science, 47 (2), 141–146.
  • Murata, K., et al., 2023. Effect of thermal modification on the stress relaxation behavior and microstructure of the cell wall. Journal of Wood Science, 69 (1), 1–9. doi:10.1186/s10086-023-02098-x
  • Nakai, T., Toba, K., and Yamamoto, H., 2018. Creep and stress relaxation behavior for natural cellulose crystal of wood cell wall under uniaxial tensile stress in the fiber direction. Journal of Wood Science, 64 (6), 745–750. doi:10.1007/s10086-018-1767-z
  • Peng, H., et al., 2020. Creep properties of compression wood fibers. Wood Science and Technology, 54 (6), 1497–1510. doi:10.1007/s00226-020-01221-1
  • Peng, H., et al., 2022a. Flexural creep behavior of hierarchical bamboo structure using time-temperature-stress superposition principle. Industrial Crops and Products, 190, 115906. doi:10.1016/j.indcrop.2022.115906
  • Peng, H., et al., 2022b. Comparison of the time-moisture and time-temperature equivalences in the creep properties of Chinese fir. Wood Material Science & Engineering, 17 (6), 911–917. doi:10.1080/17480272.2021.1976273
  • Pina, J.C., et al., 2022. Experimental study on the short-term stress relaxation response of Chilean radiata pine. Wood Science and Technology, 56 (3), 833–850. doi:10.1007/s00226-022-01380-3
  • Saifouni, O., et al., 2016. Experimental study of the mechanosorptive behaviour of softwood in relaxation. Wood Science and Technology, 50 (4), 789–805. doi:10.1007/s00226-016-0816-2
  • Socha, T., et al., 2021. Rheological relaxation of OSB beams reinforced with CFRP composites. Materials, 14 (24), 7527. doi:10.3390/ma14247527
  • Tanimoto, T., and Nakano, T., 2012. Stress relaxation of wood partially non-crystallized using aqueous NaOH solutions. Carbohydrate Polymers, 87 (3), 2145–2148. doi:10.1016/j.carbpol.2011.10.036
  • Thomas, L.H., et al., 2021. Nanostructural deformation of high-stiffness spruce wood under tension. Scientific Reports, 11 (1), 453. doi:10.1038/s41598-020-79676-2
  • Villani, V., Pucciariello, R., and Lavallata, V., 2017. Viscoelasticity of air-dried or thermo-treated woods. Journal of Polymers and the Environment, 25 (2), 479–486. doi:10.1007/s10924-016-0809-0
  • Wakashima, Y., et al., 2019. Stress relaxation behavior of wood in the plastic region under indoor conditions. Journal of Wood Science, 65 (1), 23. doi:10.1186/s10086-019-1802-8
  • Wakashima, Y., et al., 2021. Dynamic and long-term performance of wood friction connectors for timber shear walls. Engineering Structures, 241, 112351. doi:10.1016/j.engstruct.2021.112351
  • Wang, X.Y., et al., 2019. Current status of research on the properties and processing technology of domestic oak wood. China Wood Industry, 33 (5), 30–33. doi:10.19455/j.mcgy.20190507
  • Wang, J.F., et al., 2020. Time-temperature-stress equivalence in compressive creep response of Chinese fir at high-temperature range. Construction and Building Materials, 235, 117809. doi:10.1016/j.conbuildmat.2019.117809
  • Wang, R.S., and Haller, P., 2022. Applications of wood ash as a construction material in civil engineering: a review. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-03580-0
  • Wang, F.L., Huang, T.L., and Shao, Z.P., 2017. Application of TTSP to wood- development of a vertical shift factor. Holzforschung, 71 (1), 51–55. doi:10.1515/hf-2016-0081
  • Yin, Y.Q., et al., 2021. Effect of earlywood vessel distribution on creep characteristics of ring-porous oak wood. Journal of Forestry Engineering, 6 (3), 54–60. doi:10.13360/j.issn.2096-1359.202009045
  • Zhan, T.Y., et al., 2019. Temperature-humidity-time equivalence and relaxation in dynamic viscoelastic response of Chinese fir wood. Construction and Building Materials, 227, 116637. doi:10.1016/j.conbuildmat.2019.08.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.