117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimating volume of oversized copper ore chunks in an underground mine using a laser scanner and an RGB camera for hammering efficiency assessment

, , , , &
Pages 324-351 | Received 24 Jul 2023, Accepted 26 Nov 2023, Published online: 21 Dec 2023

References

  • S. Yan, and J. Xu, Study on dynamic characteristics of a hydraulic hammer, 2010 International Conference on Digital Manufacturing & Automation, Changcha, Hunan China, Vol. 2, IEEE, 2010, pp. 459–462.
  • J. Pacheco, and J. de Brito, Recycled aggregates produced from construction and demolition waste for structural concrete: Constituents, properties and production, Materials. 14 (19) (2021), pp. 5748. doi:10.3390/ma14195748.
  • A.B. Gogolewska, and M.M. Kowalczyk, Group winning blasting as a measure to mitigate seismic hazard in a deep copper ore mine, SW poland, Min. Scince. 27 (2020). doi:10.37190/msc202711.
  • T. Kujundžić, G. Bedeković, D. Kuhinek, and T. Korman, Impact of rock hardness on fragmentation by hydraulic hammer and crushing in jaw crusher, Rudarskogeološko-naftni zbornik. 20 (2008), pp. 83–90.
  • E.C. Poeck, Performance evaluation of various nozzle designs for waterjet scaling in underground excavations, a, 2000-2009-mines theses & dissertations, Int. J. Eng. Technol. Manage. Res. 10 (25) (2008). doi:10.29121/ijetmr.v9.i10.2022.1232.
  • P. Stefaniak, J. Wodecki, J. Jakubiak, and R. Zimroz, Development of test rig for robotization of mining technological processes–oversized rock breaking process case, IOP Conference Series: Earth and Environmental Science, Prague, Czech Republic, Vol. 95, IOP Publishing, 2017, p. 042028.
  • Z. Xu, and G. Yang, Modeling and simulation of hydraulic hammer for sleeve valve, Engineering. 8 (9) (2016), pp. 657–668. doi:10.4236/eng.2016.89059.
  • A. Wróblewski, P. Krot, R. Zimroz, T. Mayer, and J. Peltola, Review of linear electric motor hammers—an energy-saving and eco-friendly solution in industry, Energies. 16 (2) (2023), pp. 959. doi:10.3390/en16020959.
  • N. Decker, Y. Wang, and Q. Huang, Efficiently registering scan point clouds of 3D printed parts for shape accuracy assessment and modeling, J. Manuf. Syst. 56 (2020), pp. 587–597. doi:10.1016/j.jmsy.2020.04.001.
  • M.A. Carreira-Perpinán, A Review of Mean-Shift Algorithms for Clustering, arXiv preprint arXiv. 1503.00687. 2015.
  • D. Comaniciu, V. Ramesh, and P. Meer, Kernel-based object tracking, IEEE T. Pattern Anal. 25 (5) (2003), pp. 564–577. doi:10.1109/TPAMI.2003.1195991.
  • W. Tao, H. Jin, and Y. Zhang, Color image segmentation based on mean shift and normalized cuts, IEEE Transactions On Systems, Man, And Cybernetics, Part B (Cybernetics). 37 (5) (2007), pp. 1382–1389. doi:10.1109/TSMCB.2007.902249.
  • T.T. Nguyen, X.G. Liu, Y. Huang, H.P. Wang, Q.L. Kieu, and T.S. Dang, Ore volume measurement based on 3d laser scanning technique: a case study, Adv. Mater. Res. Trans. Tech. Publ. 610-613 net/amr.610-613.3708., (2012), pp. 3708–3714. doi:10.4028/www.scientific.
  • A. Septarini, B. Soeksmantono, and K. Wikantika, Lidar application study to calculate mine excavation, 34th Asian Conference on Remote Sensing, Bali, Indonesia, Vol. 1, Asian Association on Remote Sensing, 2013.
  • B. Jawecki, P.B. Da¸bek, K. Pawęska, and X. Wei, Estimating water retention in post-mining excavations using LiDAR ALS data for the strzelin quarry, in lower Silesia, Mine Water. Environ. 37, 4 (2018), pp. 744–753. doi:10.1007/s10230-018-0526-0.
  • Y. Wang, M. Ding, Q. Zhang, X. Zhang, and Z. Qu, Volume calculation methods of irregular stone artifacts based on 3d laser scanning technology, J. Asian Archit. Build. (2023), pp. 1–17. doi:10.1080/13467581.2023.2182640.
  • A. Bienert, C. Hess, H.-G. Maas, and G. von Oheimb, A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data, the International archives of the photogrammetry, Remote sensing and spatial information sciences XL-5, (2014), pp. 101–106. doi: 10.5194/isprsarchives-XL-5-101-2014.
  • CloudCompareV2.13 gpl software, https://www.cloudcompare.org/, accessed: 2023-05-23.
  • J.-D. Boissonnat, Geometric structures for three-dimensional shape representation, ACM Trans. Graphics. 3 (4) (1984), pp. 266–286. doi:10.1145/357346.357349.
  • R.W. Lewis, Y. Zheng, and D.T. Gethin, Three-dimensional unstructured mesh generation: Part 3. volume meshes, Comput. Methods Appl. Mech. Eng. 134 (3–4) (1996), pp. 285–310. doi:10.1016/0045-7825(95)00918-3.
  • D. Bonneau, P.-M. DiFrancesco, and D.J. Hutchinson, Surface Reconstruction for three-dimensional Rockfall volumetric analysis, ISPRS Int. J. Geo-Inf. 8 (2019 12), pp. 548. doi:10.3390/ijgi8120548.
  • V. MeshLab. 2022.02, https://www.meshlab.net/, accessed: 2023-05-23.
  • W.-C. Chang, C.-H. Wu, Y.-H. Tsai, and W.-Y. Chiu, Object volume estimation based on 3d point cloud, 2017 International Automatic Control Conference (CACS), 2017, pp. 1–5. doi:10.1109/CACS.2017.8284244.
  • B. Li, J. Wei, L. Wang, B. Ma, and M. Xu, A comparative analysis of two point cloud volume calculation methods, Int. J. Remote Sens. 40 (8) (2019), pp. 3227–3246. doi:10.1080/01431161.2018.1541111.
  • E.M. Mikhail, J.S. Bethel, and J.C. McGlone, Introduction to Modern Photogrammetry, Hoboken, New Jersey: John Wiley & Sons, 2001.
  • T. Luhmann, S. Robson, S. Kyle, and I. Harley, Close Range Photogrammetry: Principles, Techniques and Applications, Vol. 3, Dunbeath, Great Britain: Whittles publishing Dunbeath, 2006.
  • F. Remondino, A. Guarnieri, and A. Vettore, 3d modeling of close-range objects: Photogrammetry or laser scanning? Videometrics VIII, Bertinoro, Italy, Vol. 5665, SPIE, 2005, pp. 216–225.
  • A. Buyer, S. Aichinger, and W. Schubert, Applying photogrammetry and semi-automated joint mapping for rock mass characterization, Eng. Geol. 264 (2020), pp. 105332. doi:10.1016/j.enggeo.2019.105332.
  • D. Kong, C. Saroglou, F. Wu, P. Sha, and B. Li, Development and application of uav-sfm photogrammetry for quantitative characterization of rock mass discontinuities, Int. J. Rock Mech. Min. Sci. 141 (2021), pp. 104729. doi:10.1016/j.ijrmms.2021.104729.
  • M.J. Herrero, A.P. Pérez-Fortes, J.I. Escavy, J.M. Insua-Arévalo, R. De la Horra, F. López-Acevedo, and L. Trigos, 3d model generated from uav photogrammetry and semi-automated rock mass characterization, Comput Geosci 163(2022), pp. 105121. doi:10.1016/j.cageo.2022.105121.
  • D.J. Benton, S.R. Iverson, L.A. Martin, J.C. Johnson, and M.J. Raffaldi, Volumetric measurement of rock movement using photogrammetry, Int. J. Min. Sci. Technol 26 (1) (2016), pp. 123–130. doi:10.1016/j.ijmst.2015.11.020.
  • B. Slaker, Monitoring underground mine displacement using photogrammetry and laser scanning, Ph.D. thesis, Virginia Tech (2015).
  • H. Toriya, Z.P.L. Tungol, H. Ikeda, N. Owada, H.D. Jang, T. Adachi, I. Kitahara, and Y. Kawamura, Fragmentation size distribution measurement by GNSS-aided photogrammetry at real mine site, mining, Mining. 2 (3) (2022), pp. 438–448. doi:10.3390/mining2030023.
  • P.J. Bardziński, B. Doroszuk, W. Kawalec, R. Król, Investigation of grain size distribution of conveyed copper ore for modelling ore flow through a bunker, IOP Conf. Ser.: Earth Environ. Sci. 609, 1 (2020), pp. 012105. doi:10.1088/1755-1315/609/1/012105.
  • H. Jang, I. Kitahara, Y. Kawamura, Y. Endo, E. Topal, R. Degawa, S. Mazara, Development of 3d rock fragmentation measurement system using photogrammetry, Int. J. Min. Reclam. Environ. 34, 4 (2019), pp. 294–305. doi:10.1080/17480930.2019.1585597.
  • R. Goyal, A survey of diverse segmentation methods in image processing, 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET), Bhopal, Madhya Pradesh, IEEE, 2022, pp. 1–5.
  • W. Jasim and R. Mohammed, A survey on segmentation techniques for image processing, Iraqi J. Electr. Electron. Eng. 17 (2) (2021), pp. 73–93. doi:10.37917/ijeee.17.2.10.
  • S. Lampinen, and J. Mattila, Robust rock detection and clustering with surface analysis for robotic rock breaking systems, 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2021, pp. 140–147. doi:10.1109/AIM46487.2021.9517695.
  • M. Siami, T. Barszcz, J. Wodecki, and R. Zimroz, Design of an infrared image processing pipeline for robotic inspection of conveyor systems in opencast mining sites, Energies. 15 (18) (2022), pp. 6771. doi:10.3390/en15186771.
  • P. Da¸bek, J. Szrek, R. Zimroz, and J. Wodecki, An automatic procedure for overheated idler detection in belt conveyors using fusion of infrared and rgb images acquired during ugv robot inspection, Energies. 15 (2) (2022), pp. 601. doi:10.3390/en15020601.
  • M. Huang, Y. Liu, and Y. Yang, Edge detection of ore and rock on the surface of explosion pile based on improved canny operator, Alex. Eng. J. 61 (12) (2022), pp. 10769–10777. doi:10.1016/j.aej.2022.04.019.
  • P. Da¸bek, A. Wróblewski, J. Wodecki, P. Bortnowski, M. Ozdoba, R. Król, and R. Zimroz, Application of the methods of monitoring and detecting the belt mistracking in laboratory conditions, Appl. Sci. 13 (2023 4), pp. 2111. doi:10.3390/app13042111.
  • X. Ren, and J. Malik, Learning a classification model for segmentation, Ninth IEEE International Conference on Computer Vision, Nice, France, Vol. 2, IEEE Computer Society, 2003, pp. 10–10.
  • Z. Sun, P. Xuan, Z. Song, H. Li, and R. Jia, A texture fused superpixel algorithm for coal mine waste rock image segmentation, Int. J. Coal Prep. Util. 42 (4) (2022), pp. 1222–1233. doi:10.1080/19392699.2019.1699546.
  • P. Loncomilla, P. Samtani, and J.R. Del Solar, Detecting rocks in challenging mining environments using convolutional neural networks and ellipses as an alternative to bounding boxes, Expert Syst Appl. 194 (2022), pp. 116537. doi:10.1016/j.eswa.2022.116537.
  • P. Loncomilla, P. Samtani, and J.R. Del Solar, Rocky-centernet: Detecting rocks using convolutional neural networks and ellipses, Software Imp. 12 (2022), pp. 100290. doi:10.1016/j.simpa.2022.100290.
  • D. Cárdenas, I. Parra-Tsunekawa, F. Leiva, and J. Ruiz-Del Solar, Automatic determination of rock-breaking target poses for impact hammers, Energies. 15 (17) (2022), pp. 6380. doi:10.3390/en15176380.
  • P. Bortnowski, H. Gondek, R. Król, D. Marasova, and M. Ozdoba, Detection of blockages of the belt conveyor transfer point using an RGB camera and CNN autoencoder, Energies. 16 (4) (2023), pp. 1666. doi:10.3390/en16041666.
  • M. Siami, T. Barszcz, J. Wodecki, and R. Zimroz, Automated identification of overheated belt conveyor idlers in thermal images with complex backgrounds using binary classification with CNN, Sensors. 22 (24) (2022), pp. 10004. doi:10.3390/s222410004.
  • Livox avia quick start guide, Brochure (2021). URL https://terra-1-g.djicdn.com/65c028cd298f4669a7f0e40e50ba1131/Download/Avia/Livox%20Avia_Quick%20Start%20Guide_V1.4.pdf
  • Livox horizon user manual, Brochure (2019). URLhttps://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/assets/horizon/Livox%20Hozon%20user%20manual%20v1.0.pdf
  • A. Carrilho, M. Galo, and R.C. Dos Santos, Statistical outlier detection method for airborne LIDAR data., International archives of the photogrammetry, Remote Sens. Spatial Inf. Sci. 42 (1) (2018), pp. 87–92. doi:10.5194/isprs-archives-XLII-1-87-2018.
  • CloudCompare: Align, https://www.cloudcompare.org/doc/wiki/index.php? title=Align, accessed: 2023-05-14.
  • CloudCompare: Rasterize, https://www.cloudcompare.org/doc/wiki/index. php/Rasterize#Interpolating_empty_cells, accessed: 2023-05-14.
  • CloudCompare: Compute 2.5D volume, https://www.cloudcompare.org/doc/wiki/index.php?title=2.5D_Volume, accessed: 2023-05-14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.