1,116
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modeling virus transport and dynamics in viscous flow medium

, , &
Article: 2182373 | Received 20 Oct 2022, Accepted 16 Jan 2023, Published online: 02 Mar 2023

References

  • Z. Abbaszade, G. Bakirci, and M. Haghi, Electric and magnetic field applications as alternative or supportive therapy for COVID-19, Arch. Clin. Microbiol. 12(3) (2021), pp. 154.
  • Z. Abdelrahman, L. Mengyuan, and X. Wang, Comparative review of SARS-Cov-2, SARS-Cov, mers-Cov, and influenza a respiratory viruses, Front. Immunol. 11 (2020), pp. 552909.
  • Y. Aboelkassem, Covid-19 pandemic: a hill type mathematical model predicts the US death number and the reopening date, medRxiv, 2020. 10.1101/2020.04.12.20062893.
  • Y. Aboelkassem and H.E. Taha, A cooperative epidemiological model of infectious disease dynamics: a COVID-19 case study, Advances in Nonlinear Dynamics: proceedings of the Second International Nonlinear Dynamics Conference (NODYCON 2021), Vol. 3, Springer International Publishing, 2022.
  • S. Asadi, A.S. Wexler, and C.D. Cappa, et al. Aerosol emission and superemission during human speech increase with voice loudness, Sci. Rep. 9(1) (2019), pp. 1–10.
  • S. Basu, Computational characterization of inhaled droplet transport to the nasopharynx, Sci. Rep. 11 (2021), pp. 1–13.
  • M. Bhatti, O.A. Bég, and R. Ellahi, et al. Electro-magnetohydrodynamics hybrid nanofluid flow with gold and magnesium oxide nanoparticles through vertical parallel plates, J. Magn. Magn. Mater. 564 (2022), pp. 170136.
  • M.M. Bhatti, S.M. Sait, and R. Ellahi, Magnetic nanoparticles for drug delivery through tapered stenosed artery with blood based non-Newtonian fluid, Pharmaceuticals 15(11) (2022), pp. 1352.
  • S. Chatterjee, J.S. Murallidharan, and A. Agrawal, et al. Why coronavirus survives longer on impermeable than porous surfaces, Phys. Fluids 33(2) (2021), pp. 021701.
  • B. Chea, A. Bolt, and M. Agelin-Chaab, et al. Assessment of effectiveness of optimum physical distancing phenomena for COVID-19, Phys. Fluids 33(5) (2021), pp. 051903.
  • Y. Cheng, J. Ma, H. Wang, X. Wang, Z. Hu, H. Li, H. Zhang, and X. Liu, Co-infection of influenza a virus and SARS-Cov-2: a retrospective cohort study, J. Med. Virol. 93 (2021), pp. 2947–2954.
  • C. Coimbra and R. Rangel, General solution of the particle momentum equation in unsteady Stokes flows, J. Fluid. Mech. 370 (1998), pp. 53–72.
  • C.P. Cummins, O.J. Ajayi, and F.V. Mehendale, et al. The dispersion of spherical droplets in source–sink flows and their relevance to the COVID-19 pandemic, Phys. Fluids 32(8) (2020), pp. 083302.
  • S.K. Das, J. Alam, and S. Plumari, et al. Transmission of airborne virus through sneezed and coughed droplets, Phys. Fluids 32(9) (2020), pp. 097102.
  • W.H. Finlay, The Mechanics of Inhaled Pharmaceutical Aerosols, Academic Press, San Diego, 2001.
  • T. Flerlage, D. Boyd, and V. Meliopoulos, et al. Influenza virus and SARS-Cov-2: pathogenesis and host responses in the respiratory tract, Nat. Rev. Microbiol. 19 (2021), pp. 425–441.
  • H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000), pp. 599–653.
  • M. Jahangiri MS and M.R. Sadeghi, Numerical study of turbulent pulsatile blood flow through stenosed artery using fluid-solid interaction, Comput. Math. Methods Med. 2015 (2015), pp. 15613.
  • J. Jiménez-Lozano, M. Sen, and P.F. Dunn, Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter, Phys. Rev. E. 79 (2009), pp. 041901.
  • P. Katre, S. Banerjee, and S. Balusamy, et al. Fluid dynamics of respiratory droplets in the context of COVID-19: airborne and surfaceborne transmissions, Phys. Fluids 33(8) (2021), p. 081302.
  • I. Kim, S. Elghobashi, and W.A. Sirignano, On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers, J. Fluid. Mech. 367 (1998), pp. 221–253.
  • B. Maher, R. Chavez, and G.C. Tomaz, et al. A fluid mechanics explanation of the effectiveness of common materials for respiratory masks, Int. J. Infect. Dis. 69 (2020), pp. 505–513.
  • H. Minasyan, Bactericidal capacity of erythrocytes in human cardiovascular system, Int. Clin. Pathol. J. 2(5) (2016), pp. 00052.
  • M.S. Moayeri and G.R. Zendehbudi, Effects of elastic property of the wall on flow characteristics through arterial stenoses, J. Biomech. 36 (2003), pp. 525–535.
  • K. Monroe, Y. Yao, and A. Lattanzi, et al. Role of pulsatility on particle dispersion in expiratory flows, Phys. Fluids 33(4) (2021), pp. 043311.
  • W. Monteiro, M. Monteiro, and E. Monteiro, et al. Mathematical modelling of dynamic behavior of droplets of saliva as a vehicles for respiratory pathogens transmission, Am Sci. Res. J. Eng. Tech. Sci. 69(1) (2020), pp. 105–112.
  • J. Qu and N.C. Wickramasinghe, Weakened magnetic field, cosmic rays and zika virus outbreak, Curr. Sci. 115(3) (2018), pp. 382–383.
  • S.X.Z. Quek, E.X.L. Loo, and A. Demutska, et al. Impact of the coronavirus disease 2019 pandemic on irritable bowel syndrome, J. Gastroenterol. Hepatol. 36 (2021), pp. 2187–2197.
  • R.N. Rajat Mittal and J.H. Seo, The flow physics of COVID-19, J. Fluid Mech. 894 (2020), pp. F2.
  • D. Ram, D.S. Bhandari, D. Tripathi, and K. Sharma, Propagation of H1N1 virus through saliva movement in oesophagus: a mathematical model, Eur. Phys. J. Plus. 137(7) (2022), pp. 866.
  • M. Rosti, S. Olivieri, and M. Cavaiola, et al. Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing, Sci. Rep. 10(1) (2020), pp. 1–9.
  • M.S. Samuel, A computer simulation study on novel corona virus transmission among the people in a queue, medRxiv. (2020), pp. 1–29.
  • D. Sharp, A. Taylor, and I. McLean, et al. Densities and sizes of the influenza viruses a (pr8 strain) and b (Lee strain) and the swine influenza virus, J. Biol. Chem. 159 (1945), pp. 29–44.
  • M.C. Swet, G.S. Malcolm, D.R. Clark, and J.K. Baillie, Sars-Cov-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses, Lancet 10334 (2022), pp. 1463–1464.
  • J.W. Tang, The effect of environmental parameters on the survival of airborne infectious agents, J. R. Soc. Interface 6 (2009), pp. S737–S746.
  • T. Temte, S. Barlow, and E. Temte, et al. Sars-Cov-2 co-detection with influenza a and other respiratory viruses among school-aged children and their household members – March 12, 2020, to February 22, 2022, Dane County, Wisconsin. Clin Infect Dis. 2022;23.
  • D. Tripathi, D.S. Bhandari, and O.A. Bég, Thermal effects on SARS-Cov-2 transmission in peristaltic blood flow: mathematical modeling, Phys. Fluids 34 (2022), pp. 061904.
  • R. Vinoth, D. Kumar, and R. Adhikari, et al. Non-Newtonian and Newtonian blood flow in human aorta: a transient analysis, Biomed. Res. 28 (2017), pp. 3194–3203.
  • X. Xie, Y. Li, and A. Chwang, et al. How far droplets can move in indoor environments-revisiting the wells evaporation-falling curve, Indoor. Air. 17(3) (2007), pp. 211–225.