730
Views
0
CrossRef citations to date
0
Altmetric
Special issue In memory of Fred Brauer

Effects of behaviour change on HFMD transmission

, , , &
Article: 2244968 | Received 15 Aug 2022, Accepted 01 Aug 2023, Published online: 15 Aug 2023

References

  • National Administration of Disease Control and Prevention, Reported Cases and Deaths of National Notifiable Infectious Diseases – China, 2020. http://www.nhc.gov.cn/jkj/s3578/202103/f1a448b7df7d4760976fea6d55834966.shtml, 2021.
  • Shanghai Municipal Bureau of Statistics and Survey Office of the National Bureau of Statistics in Shanghai, 2020 Shanghai Statistical Yearbook. http://tjj.sh.gov.cn/tjnj/index.html, 2020.
  • L. Arriola and J.M. Hyman, Senditivity analysis for uncertainty quantification in mathematical models, in Mathematical and Statistical Estimation Approaches in Epidemiology, G. Chowell, J. M. Hyman, L. M. A. Bettencourt, and C. Castillo-Chavez, eds., Springer, New York, 2009, pp. 195–247.
  • M.C.J. Bootsma and N.M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in U.S. cities, Proc. Natl. Acad. Sci. U.S.A. 104 (2007), pp. 7588–7593.
  • F. Brauer, A simple model for behaviour change in epidemics, BMC Publ. Health 11 (2011), pp. 53.
  • F. Brauer, The final size of a serious epidemic, Bull. Math. Biol. 81 (2019), pp. 869–877.
  • V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci. 42 (1978), pp. 43–61.
  • C. Castillo-Chavez and H.R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity, O. Arino, D. E. Axelrod, M. Kimmel, and M. Langlais, eds., Wuerz, Winnipeg, Canada, 1995, pp. 33–50.
  • S. Collinson and J.M. Heffernan, Modelling the effects of media during an influenza epidemic, BMC Publ. Health 14 (2014), pp. 376.
  • J. Cui, X. Tao, and H. Zhu, An SIS infection model incorporating media coverage, Rocky Mountain J. Math. 38 (2008), pp. 1323–1334.
  • O. Diekmann, J.A.P. Heesterbeek, and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol.28 (1990), pp. 365–382.
  • S. Funk, M. Salathé, and V.A.A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface 7 (2010), pp. 1247–1256.
  • S. Funk, S. Bansal, C.T. Bauch, K.T.D. Eames, W.J. Edmunds, A.P. Galvani, and P. Klepac, Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics 10 (2015), pp. 21–25.
  • D. Gao and L. Cao, Vector-borne disease models with Lagrangian approach. under review, 2021.
  • D. Gao and D. He, Special issue: Modeling the biological, epidemiological, immunological, molecular, virological aspects of COVID-19, Math. Biosci. Eng. 18 (2021), pp. 983–985.
  • D. Gao and S. Ruan, An SIS patch model with variable transmission coefficients, Math. Biosci. 232 (2011), pp. 110–115.
  • S. Hsu and Y. Hsieh, Modeling intervention measures and severity-dependent public response during severe acute respiratory syndrome outbreak, SIAM J. Appl. Math. 66 (2006), pp. 627–647.
  • T. Ji, T. Han, X. Tan, S. Zhu, D. Yan, Q. Yang, Y. Song, A. Cui, Y. Zhang, N. Mao, S. Xu, Z. Zhu, D. Niu, Y. Zhang, and W. Xu, Surveillance, epidemiology, and pathogen spectrum of hand, foot, and mouth disease in mainland of China from 2008 to 2017, Biosaf. Health 1 (2019), pp. 32–40.
  • H. Joshi, S. Lenhart, K. Albright, and K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math. Biosci. Eng. 5 (2008), pp. 757–770.
  • J.T.F. Lau, X. Yang, H. Tsui, and J.H. Kim, Monitoring community responses to the SARS epidemic in Hong Kong: From day 10 to day 62, J. Epidemiol. Community Health 57 (2003), pp. 864–870.
  • Y. Li, J. Zhang, and X. Zhang, Modeling and preventive measures of hand, foot and mouth disease (HFMD) in China, Int. J. Environ. Res. Public Health 11 (2014), pp. 3108–3117.
  • Y. Li, L. Wang, L. Pang, and S. Liu, The data fitting and optimal control of a hand, foot and mouth disease (HFMD) model with stage structure, Appl. Math. Comput. 276 (2016), pp. 61–74.
  • J. Liu, Threshold dynamics for a hfmd epidemic model with periodic transmission rate, Nonlinear Dyn. 64 (2011), pp. 89–95.
  • R. Liu, J. Wu, and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med. 8 (2007), pp. 153–164.
  • W.P. London and J.A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates, Am. J. Epidemiol. 98 (1973), pp. 453–468.
  • M. Lu, D. Gao, J. Huang, and H. Wang, Relative prevalence-based dispersal in an epidemic patch model, J. Math. Biol. 86 (2023), pp. 52.
  • Y. Ma, M. Liu, Q. Hou, and J. Zhao, Modelling seasonal HFMD with the recessive infection in Shandong, China, Math. Biosci. Eng. 10 (2013), pp. 1159–1171.
  • P. Manfredi and A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer, New York, 2013.
  • S. Marino, I.B. Hogue, C.J. Ray, and D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol. 254 (2008), pp. 178–196.
  • A. Misra, A. Sharma, and V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay, J. Biol. Syst. 19 (2011), pp. 389–402.
  • N. Perra, Non-pharmaceutical interventions during the COVID-19 pandemic: A review, Phys. Rep.913 (2021), pp. 1–52.
  • M. Pons-Salort and N.C. Grassly, Serotype-specific immunity explains the incidence of diseases caused by human enteroviruses, Science 361 (2018), pp. 800–803.
  • N. Roy and N. Halder, Compartmental modeling of hand, foot and mouth infectious disease (HFMD), Res. J. Appl. Sci. 5 (2010), pp. 177–182.
  • L. Shi, H. Zhao, and D. Wu, Modelling and analysis of HFMD with the effects of vaccination, contaminated environments and quarantine in mainland China, Math. Biosci. Eng. 16 (2019), pp. 474–500.
  • Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math. 73 (2013), pp. 1513–1532.
  • H.L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.
  • H.R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal. 24 (1993), pp. 407–435.
  • F.C.S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak, in Second Asia International Conference on Modeling & Simulation, 2008, pp. 947–952.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
  • J.X. Velasco-Hernández, F. Brauer, and C. Castillo-Chavez, Effects of treatment and prevalence-dependent recruitment on the dynamics of a fatal disease, IMA J. Math. Appl. Med. 13 (1996), pp. 175–192.
  • Y. Wang and F. Sung, Modeling the infections for enteroviruses in Taiwan. preprint, Available at, 2004.
  • X. Wang, D. Gao, and J. Wang, Influence of human behavior on cholera dynamics, Math. Biosci. 267 (2015), pp. 41–52.
  • J. Wang, Y. Xiao, and R.A. Cheke, Modelling the effects of contaminated environments on HFMD infections in mainland China, Biosystems 140 (2016), pp. 1–7.
  • J. Wang, Z. Teng, X. Cui, C. Li, H. Pan, Y. Zheng, S. Mao, Y. Yang, L. Wu, X. Guo, X. Zhang, and Y. Zhu, Epidemiological and serological surveillance of hand-foot-and-mouth disease in Shanghai, China, 2012–2016, Emerg. Microbes Infect. 7 (2018), pp. 8.
  • Y. Xiao, T. Zhao, and S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng. 10 (2013), pp. 445–461.
  • C. Yang, X. Wang, D. Gao, and J. Wang, Impact of awareness programs on cholera dynamics: Two modeling approaches, Bull. Math. Biol. 79 (2017), pp. 2109–2131.
  • X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite dimensional periodic semiflows with applications, Can. Appl. Math. Quart. 3 (1995), pp. 473–495.
  • H. Zhao, L. Shi, J. Wang, and K. Wang, A stage structure hfmd model with temperature-dependent latent period, Appl. Math. Model. 93 (2021), pp. 745–761.
  • Z. Zhao, C. Zheng, H. Qi, Y. Chen, M.P. Ward, F. Liu, J. Hong, Q. Su, J. Huang, X. Chen, J. Le, X.Liu, M. Ren, J. Ba, Z. Zhang, Z. Chang, and Z. Li, Impact of the coronavirus disease 2019 interventions on the incidence of hand, foot, and mouth disease in mainland China, Lancet Reg. Health West Pac.20 (2022), Article ID 100362.