966
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimal control and cost-effectiveness analysis for leptospirosis epidemic

, , &
Article: 2248178 | Received 23 Sep 2022, Accepted 10 Aug 2023, Published online: 11 Sep 2023

References

  • F.B. Agusto and I.M. ELmojtaba, Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection, PLoS ONE 12(2) (2017), pp. e0171102.
  • J.O. Akanni, F.O. Akinpelu, S. Olaniyi, AT. Oladipo, and AW. Ogunsola, Modelling financial crime population dynamics: Optimal control and cost-effectiveness analysis, Int. J. Dyn. Control 8(2) (2020), pp. 531–544.
  • H.T. Alemneh, A co-infection model of dengue and leptospirosis diseases, Adv. Differ. Equ. 2020(1) (2020), pp. 1–23.
  • M.R. Mohd Ali, A.W. Mohamad Safiee, P. Thangarajah, M.H. Fauzi, A.M. Besari, N. Ismail, and C. Yean Yean, Molecular detection of leptospirosis and melioidosis co-infection: A case report, J. Infect. Public. Health. 10(6) (2017), pp. 894–896.
  • J.K.K. Asamoah, E. Okyere, A. Abidemi, S.E. Moore, G.-Q. Sun, Z. Jin, E. Acheampong, and J. Frank Gordon, Optimal control and comprehensive cost-effectiveness analysis for COVID-19, Res. Phys. 33 (2022), pp. 105177.
  • H.W. Berhe, O.D. Makinde, and D.M. Theuri, Optimal control and cost-effectiveness analysis for dysentery epidemic model, Appl. Math. Inf. Sci. 12(6) (2018), pp. 1183–1195.
  • K. Boey, K. Shiokawa, and S. Rajeev, Leptospira infection in rats: A literature review of global prevalence and distribution, PLoS. Negl. Trop. Dis. 13(8) (2019), pp. e0007499.
  • C.D.C. Leptospirosis, Fact sheet for clinicians, 1–4. https://www.cdc.gov/leptospirosis/pdf/fs-leptospirosis-clinicians-eng-508.pdf. Cdc, 2018.
  • S.G. De Vries, B.J. Visser, I.M. Nagel, M. GA. Goris, R.A. Hartskeerl, and M.P. Grobusch, Leptospirosis in sub-Saharan Africa: A systematic review, Int. J. Infect. Dis. 28 (2014), pp. 47–64.
  • A. Desvars-Larrive, S. Smith, G. Munimanda, P. Bourhy, T. Waigner, M. Odom, D.S. Gliga, and C. Walzer, Prevalence and risk factors of leptospira infection in urban brown rats (Rattus norvegicus), Vienna, Austria, Urban. Ecosyst. 23(4) (2020), pp. 775–784.
  • H.A. Engida, D.M. Theuri, D. Gathungu, J. Gachohi, and H.T. Alemneh, A mathematical model analysis for the transmission dynamics of leptospirosis disease in human and rodent populations, Comput. Math. Methods. Med. 2022 (2022).https://doi.org/10.1155/2022/1806585.
  • S. Fever, M. Fever, and A. Fever, Rice-Field Fever, and Canicola Fever. Leptospirosis: Center for food security and public health technical factsheets. 81: https://core.ac.uk/download/pdf/128976407.pdf 2013.
  • W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer Science & Business Media, 1975.
  • M. Ghosh, S. Olaniyi, and O.S. Obabiyi, Mathematical analysis of reinfection and relapse in malaria dynamics, Appl. Math. Comput. 373 (2020), pp. 125044.
  • A.B. Gumel, Causes of backward bifurcations in some epidemiological models, J. Math. Anal. Appl. 395(1) (2012), pp. 355–365.
  • H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42(4) (2000), pp. 599–653.
  • M.A. Khan, S. Islam, and S. Afzal Khan, Mathematical modeling towards the dynamical interaction of leptospirosis, Appl. Math. Inform. Sci. 8(3) (2014), pp. 1049.
  • M.A. Khan, S. Islam, S.A. Khan, I. Khan, S. Shafie, and T. Gul, Prevention of leptospirosis infected vector and human population by multiple control variables. In Abstract and Applied Analysis, Vol. 2014, Hindawi, 2014.
  • M.A. Khan, S.F. Saddiq, S. Islam, I. Khan, and S. Shafie, Dynamic behavior of leptospirosis disease with saturated incidence rate, Int. J. Appl. Comput. Math. 2(4) (2016), pp. 435–452.
  • M.A. Khan, G. Zaman, S. Islam, and M.I. Chohan, Optimal campaign in leptospirosis epidemic by multiple control variables. 2012.
  • S.J. Khan, M.B. Khattak, and A. Khan, Leptospirosis: A disease with global prevalence, J. Microbiol. Exp. 6(5) (2018), pp. 219–221.
  • S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models, CRC press, 2007. 5–33.
  • P. N. levett and D. A. haake, Leptospira species (leptospirosis). Principles and practice of infectious diseases, Churchill Livingstone Elsevier, Philadelphia, pp. 3059–3065, 2010.
  • A. Minter, F. Costa, H. Khalil, J. Childs, P. Diggle, A.I. Ko, and M. Begon, Optimal control of rat-borne leptospirosis in an urban environment, Front. Ecol. Evol. 7 (2019), pp. 209.
  • K.O. Okosun, M. Mukamuri, and D. Oluwole Makinde, Global stability analysis and control of leptospirosis, Open Math. 14(1) (2016), pp. 567–585.
  • E. Okyere, S. Olaniyi, and E. Bonyah, Analysis of zika virus dynamics with sexual transmission route using multiple optimal controls, Sci. African 9 (2020), pp. e00532.
  • S. Olaniyi, K.O. Okosun, S.O. Adesanya, and R.S. Lebelo, Modelling malaria dynamics with partial immunity and protected travellers: Optimal control and cost-effectiveness analysis, J. Biol. Dyn. 14(1) (2020), pp. 90–115.
  • R. Paisanwarakiat and R. Thamchai, Optimal control of a leptospirosis epidemic model, Sci. Technol. Asia 26 (2021), pp. 9–17.
  • M. Pellizzaro, C.M. Martins, A.C. Yamakawa, D. da Cunha Ferraz, V.M. Morikawa, F. Ferreira, A.P. dos Santos, A.W. Biondo, and H. Langoni, Molecular detection of leptospira spp. in rats as early spatial predictor for human disease in an endemic urban area, PLoS ONE 14(5) (2019), pp. e0216830.
  • L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The maximum principle. The Mathematical Theory of Optimal Processes. New York, John Wiley and Sons, 1962.
  • U.D. Purwati, F. Riyudha, and H. Tasman, Optimal control of a discrete age-structured model for tuberculosis transmission, Heliyon 6(1) (2020), pp. e03030.
  • J.P. Romero-Leiton, J.M. Montoya-Aguilar, and E. Ibargüen-Mondragón, An optimal control problem applied to malaria disease in colombia, Appl. Math. Sci. 12(6) (2018), pp. 279–292.
  • V. Saechan, D. Tongthainan, W. Fungfuang, P. Tulayakul, G. Ieamsaard, and R. Ngasaman, Natural infection of leptospirosis and melioidosis in long-tailed macaques (Macaca fascicularis) in Thailand, J. Veter. Med. Sci. 84(5) (2022), pp. 700–706.
  • M. Saito, S. Miyahara, S. YAM Villanueva, N. Aramaki, M. Ikejiri, Y. Kobayashi, J.P. Guevarra, T. Masuzawa, N.G. Gloriani, Y. Yanagihara, and S.I.. Yoshida, Pcr and culture identification of pathogenic leptospira spp. from coastal soil in leyte, philippines, after a storm surge during super typhoon haiyan (yolanda), Appl. Environ. Microbiol. 80(22) (2014), pp. 6926–6932.
  • K. Suwannarong, N. Soonthornworasiri, P. Maneekan, S. Yimsamran, K. Balthip, S. Maneewatchararangsri, W. Saisongkorh, C. Saengkul, S. Sangmukdanun, N. Phunta, and P. Singhasivanon. Rodent–human interface, Behavioral risk factors and leptospirosis in a province in the central region of Thailand, Veterinary Sci. 9(2) (2022), pp. 85.
  • C.C. Udechukwu, C.A. Kudi, P.A. Abdu, E.A. Abiayi, and O. Orakpoghenor, Prevalence of leptospira interrogans in wild rats (Rattus norvegicus and Cricetomys gambianus) in zaria, nigeria, Heliyon 7(1) (2021), pp. e05950.