899
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The impact of predators of mosquito larvae on Wolbachia spreading dynamics

, &
Article: 2249024 | Received 18 May 2023, Accepted 13 Aug 2023, Published online: 21 Aug 2023

References

  • S. Ai, J. Li, J. Yu, and B. Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B. 27(6) (2022), pp. 3039–3052.
  • G. Bian, Y. Xu, P. Lu, Y. Xie, and Z. Xi, The endosymbiotic bacterium wolbachia induces resistance to dengue virus in aedes aegypti, PLoS. Pathog. 6(4) (2010), pp. e1000833.
  • F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer New York, New York, NY, 2012.
  • L. Cai, S. Ai, and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM. J. Appl. Math. 74(6) (2014), pp. 1786–1809.
  • C. Castillo-Chavez and B.J. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1(2) (2004), pp. 361–404.
  • P. Dambach, The use of aquatic predators for larval control of mosquito disease vectors: opportunities and limitations, Biol. Control. 150 (2020), pp. 104357.
  • Dengue, Technical report, World Mosquito Program, 2022.
  • H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
  • M. Ghosh, A. Lashari, and X.-Z. Li, Biological control of malaria: A mathematical model, Appl. Math. Comput. 219(15) (2013), pp. 7923–7939.
  • J.-T. Gong, T.-P. Li, M.-K. Wang, and X.-Y. Hong, Wolbachia-based strategies for control of agricultural pests, Curr. Opin. Insect. Sci. 57 (2023). doi:10.1016/j.cois.2023.101039
  • L.F. Griffin and J.M. Knight, A review of the role of fish as biological control agents of disease vector mosquitoes in mangrove forests: reducing human health risks while reducing environmental risk, Wetl. Ecol. Manag. 20(3) (2012), pp. 243–252.
  • S.B. Hsu, T.W. Hwang, and Y. Kuang, Global analysis of the michaelis-menten-type ratio-dependent predator-prey system, J. Math. Biol. 42(6) (2001), pp. 489–506.
  • S.B. Hsu, T.W. Hwang, and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci. 181(1) (2003), pp. 55–83.
  • L. Hu, M. Tang, Z. Wu, Z. Xi, and J. Yu, The threshold infection level for wolbachia invasion in random environments, J. Differ. Equ. 266(7) (2019), pp. 4377–4393.
  • M. Huang, S. Liu, and X. Song, Modeling of periodic compensation policy for sterile mosquitoes incorporating sexual lifespan, Math. Methods. Appl. Sci. 46(5) (2023), pp. 5725–5741.
  • M. Huang, X. Song, and J. Li, Modelling and analysis of impulsive releases of sterile mosquitoes, J. Biol. Dyn. 11(1) (2017), pp. 147–171.
  • Y. Hui, G. Lin, J. Yu, and J. Li, A delayed differential equation model for mosquito population suppression with sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B. 25(12) (2020), pp. 4659–4676.
  • M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, UK, 2001.
  • Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol. 36 (1998), pp. 389–406.
  • Y. Kuang and K. Wang, Coexistence and extinction in a data-based ratio-dependent model of an insect community, Math. Biosci. Eng. 17(4) (2020), pp. 3274–3293.
  • J. Li and S. Ai, Impulsive releases of sterile mosquitoes and interactive dynamics with time delay, J. Biol. Dyn. 14(1) (2020), pp. 313–331.
  • Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol. 73(10) (2011), pp. 2384–2407.
  • R.M. May, Stability and Complexity in Model Ecosystems (Princeton Landmarks in Biology), Princeton University, Princeton, 2001.
  • C.J. McMeniman, R.V. Lane, B.N. Cass, A.W.C. Fong, M. Sidhu, Y.-F. Wang, and S.L. O'Neill, Stable introduction of a life-shortening wolbachia infection into the mosquito aedes aegypti, Science323(5910) (2009), pp. 141–144.
  • H. MuGen, T. MoXun, and Y. JianShe, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China-Math. 58(1) (2015), pp. 77–96.
  • H. Quiroz-Martinez and A. Rodriguez-Castro, Aquatic insects as predators of mosquito larvae, J. Am. Mosq. Control. Assoc. 23(sp2) (2007), pp. 110–117.
  • Y. Shi and B. Zheng, Modeling wolbachia infection frequency in mosquito populations via a continuous periodic switching model, Adv. Nonlinear Anal. 12(1) (2023). doi:10.1515/anona-2022-0297
  • H.L. Smith, (mathematical surveys and monographs). Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. 1995.
  • H.L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, UK, 1995.
  • M.A. Tolle, Mosquito-borne diseases, Curr. Probl. Pediatr. Adolesc. Health. Care. 39(4) (2009), pp. 97–140.
  • M. Turelli and A.A. Hoffmann, Rapid spread of an inherited incompatibility factor in california drosophila, Nature 353(6343) (1991), pp. 440–442.
  • A.R. Van Dam and W.E. Walton, Comparison of mosquito control provided by the arroyo chub (gilaorcutti) and the mosquitofish (gambusia affinis), J. Am. Mosq. Control. Assoc. 23(4) (2007), pp. 430–441.
  • T. Walker, P.H. Johnson, L.A. Moreira, I. Iturbe-Ormaetxe, F.D. Frentiu, C.J. McMeniman, Y.S.Leong, Y. Dong, J. Axford, P. Kriesner, A.L. Lloyd, S.A. Ritchie, S.L. O'Neill, and A.A. Hoffmann, The wmel wolbachia strain blocks dengue and invades caged aedes aegypti populations, Nature 476(7361) (2011), pp. 450–453.
  • Z.Y. Xi, C.C.H. Khoo, and S.L. Dobson, Wolbachia establishment and invasion in an aedes aegypti laboratory population, Science 310(5746) (2005), pp. 326–328.
  • R. Yan, B. Zheng, and J. Yu, Existence and stability of periodic solutions for a mosquito suppression model with incomplete cytoplasmic incompatibility, Discrete Contin. Dyn. Syst. Ser. B. 28(5) (2023), pp. 3172–3192.
  • J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM. J. Appl. Math. 78(6) (2018), pp. 3168–3187.
  • J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equ. 269(12) (2020), pp. 10395–10415.
  • J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn.13(1) (2019), pp. 606–620.
  • J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equ. 269(7) (2020), pp. 6193–6215.
  • D. Zhang, Y. Sun, H. Yamada, Y. Wu, G. Wang, Q. Feng, D. Paerhande, H. Maiga, J. Bouyer, J.Qian, Z. Wu, and X. Zheng, Effects of radiation on the fitness, sterility and arbovirus susceptibility of a wolbachia-free aedes albopictus strain for use in the sterile insect technique, Pest. Manag. Sci. 2023 (2023). doi:10.1002/ps.7615
  • X. Zhang, S. Tang, and R.A. Cheke, Models to assess how best to replace dengue virus vectors with wolbachia-infected mosquito populations, Math. Biosci. 269 (2015), pp. 164–177.
  • B. Zheng, M. Tang, J. Yu, and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol. 76(1-2) (2018), pp. 235–263.
  • B. Zheng and J. Yu, At most two periodic solutions for a switching mosquito population suppression model, J. Dyn. Differ. Equ. 2022 (2022). doi:10.1007/s10884-021-10125-y
  • Z. Zhu, X. Feng, and L. Hu, Global dynamics of a mosquito population suppression model under a periodic release strategy, J. Appl. Anal.Comput. 13(4) (2023), pp. 2297–2314.
  • Z. Zhu, B. Zheng, Y. Shi, R. Yan, and J. Yu, Stability and periodicity in a mosquito population suppression model composed of two sub-models, Nonlinear. Dyn. 107(1) (2022), pp. 1383–1395.
  • W.F. Zuharah and P.J. Lester, The influence of aquatic predators on mosquito abundance in animal drinking troughs in new zealand, J. Vector. Ecol. 35(2) (2010), pp. 347–353.